Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Piperazine-1,4-diium bis(perchlorate) dihydrate

Cong-hu Peng

Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
Correspondence e-mail: ayitpch@yahoo.com.cn

Received 7 July 2010; accepted 30 July 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.045 ; w R$ factor $=0.109$; data-to-parameter ratio $=17.6$.

The asymmetric unit of the title compound, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+}$.$2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains half of a piperazinediium cation, one perchlorate anion and one water molecule. The diprotonated piperazine ring, which is completed by crystallographic inversion symmetry, adopts a chair conformation. In the crystal structure, the cations and anions are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network.

Related literature

For background to simple molecular-ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Katrusiak \& Szafrański $(1999,2006)$.

Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=323.09$
Monoclinic, $P 2_{1} / c$

$$
\begin{aligned}
& a=7.2588(15) \AA \AA \\
& b=6.5089(13) \AA \\
& c=14.543(4) \AA
\end{aligned}
$$

$\beta=113.56(3)^{\circ}$
$\mu=0.56 \mathrm{~mm}^{-1}$
$V=629.8(3) \AA^{3}$
$T=293 \mathrm{~K}$
$Z=2$
Mo $K \alpha$ radiation
$0.28 \times 0.26 \times 0.20 \mathrm{~mm}$

Data collection
Rigaku Mercury 2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)
$T_{\text {min }}=0.856, T_{\text {max }}=0.896$
6362 measured reflections
1458 independent reflections 1130 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad 83$ parameters
$w R\left(F^{2}\right)=0.109$
$S=1.07$
1458 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.00	$2.875(3)$	165
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 5^{\mathrm{ii}}$	0.90	2.14	$2.883(3)$	140
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.90	2.49	$3.060(3)$	122
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{iv}}$	0.90	2.56	$3.040(3)$	114
O5-H5WB $^{\mathrm{iv}} \mathrm{O}^{\mathrm{v}}$	0.77	2.26	$2.999(3)$	161
$\mathrm{O}^{\mathrm{V}}-\mathrm{H} 5 W A \cdots \mathrm{O} 1$	0.82	2.59	$3.192(3)$	131
$\mathrm{O}^{2}-\mathrm{H} 5 W A \cdots \mathrm{O} 4$	0.82	2.26	$3.040(3)$	159

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y+1,-z+2$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $-x+1,-y+1,-z+2 ;(\mathrm{v}) x+1, y, z$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by a start-up grant from Anyang Institute of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2304).

References

Katrusiak, A. \& Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.
Katrusiak, A. \& Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, TheWoodlands, Texas, USA
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o2214 [doi:10.1107/S1600536810030345]

Piperazine-1,4-diium bis(perchlorate) dihydrate

C. Peng

Comment

Recently, much attention has been devoted to simple molecular-ionic crystals containing organic cations and acid radicals (1:1 molar ratio) due to the tunability of their special structural features and their interesting physical properties (Katrusiak \& Szafrański, 1999; Katrusiak \& Szafrański, 2006). In our laboratory, the title compound has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound consists of a half piperazine cation, one chlorate anion and one water molecule (Fig. 1). The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network (Tab. 1 \& Fig. 2).

Experimental

Piperazine ($1.7 \mathrm{~g}, 20 \mathrm{mmol}$) and 10% aqueous $\mathrm{HClO}_{4}(25 \mathrm{ml})$ in a molar ratio of $1: 1$ were mixed and dissolved in 30 ml water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed after fifteen days.

Refinement

The H atoms of piperzinium ion were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.97$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C} / \mathrm{N})$. The hydrogen atoms of the water molecule were located from a difference fourier map and were fixed at those positions with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. The asymmetric unit of the title compound with atomic labels. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. The unit cell packing of the title compound viewed along the a-axis; hydrogen bonds are drawn as dashed lines.

supplementary materials

Piperazine-1,4-diium bis(perchlorate) dihydrate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=323.09$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.2588$ (15) \AA
$b=6.5089(13) \AA$
$c=14.543$ (4) \AA
$\beta=113.56(3)^{\circ}$
$V=629.8(3) \AA^{3}$
$Z=2$
$F(000)=336$
$D_{\mathrm{x}}=1.704 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1130 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.56 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.28 \times 0.26 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku Mercury 2

diffractometer
Radiation source: fine-focus sealed tube
graphite
Detector resolution: 13.6612 pixels mm^{-1} ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
$T_{\text {min }}=0.856, T_{\text {max }}=0.896$
1458 independent reflections
1130 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-8 \rightarrow 8$
$l=-18 \rightarrow 18$
6362 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.109$
$S=1.07$
1458 reflections
83 parameters
0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0357 P)^{2}+0.361 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.044 (4)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.3021(4)$	$1.0866(4)$	$0.94987(19)$	$0.0411(6)$
H1C	0.2516	1.0117	0.8870	0.049^{*}
H1D	0.1989	1.1821	0.9491	0.049^{*}
C2	$0.3493(4)$	$0.9393(4)$	$1.03562(19)$	$0.0426(6)$
H2B	0.3904	1.0149	1.0981	0.051^{*}
H2A	0.2303	0.8603	1.0272	0.051^{*}
C11	$0.78737(8)$	$0.59992(10)$	$0.84112(4)$	$0.0390(2)$
N1	$0.5133(3)$	$0.7985(3)$	$1.03919(15)$	$0.0401(5)$
H1B	0.4715	0.7234	0.9825	0.048^{*}
H1A	0.5420	0.7115	1.0912	0.048^{*}
O1	$0.9198(3)$	$0.7709(4)$	$0.87194(18)$	$0.0765(7)$
O2	$0.7472(3)$	$0.5298(3)$	$0.92385(14)$	$0.0561(6)$
O3	$0.6016(3)$	$0.6622(3)$	$0.76257(13)$	$0.0562(6)$
O4	$0.8781(4)$	$0.4421(4)$	$0.80648(18)$	$0.0853(8)$
O5	$1.3089(2)$	$0.5745(3)$	$0.85594(12)$	$0.0421(5)$
H5WB	1.3600	0.6040	0.8207	0.063^{*}
H5WA	1.1857	0.5653	0.8324	0.063^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0416(14)$	$0.0393(14)$	$0.0403(14)$	$0.0025(11)$	$0.0140(11)$	$0.0007(11)$
C2	$0.0444(14)$	$0.0446(15)$	$0.0407(14)$	$-0.0009(12)$	$0.0189(12)$	$0.0031(11)$
C11	$0.0336(3)$	$0.0498(4)$	$0.0351(3)$	$-0.0020(3)$	$0.0152(2)$	$-0.0022(3)$
N1	$0.0538(13)$	$0.0292(10)$	$0.0348(11)$	$-0.0025(9)$	$0.0149(9)$	$0.0020(9)$
O1	$0.0532(13)$	$0.0832(17)$	$0.0868(16)$	$-0.0303(12)$	$0.0214(12)$	$0.0037(13)$
O2	$0.0542(11)$	$0.0726(14)$	$0.0442(11)$	$-0.0003(10)$	$0.0226(9)$	$0.0140(10)$
O3	$0.0415(10)$	$0.0814(15)$	$0.0391(10)$	$0.0024(10)$	$0.0091(9)$	$0.0105(10)$
O4	$0.0803(16)$	$0.102(2)$	$0.0775(17)$	$0.0328(15)$	$0.0362(14)$	$-0.0225(14)$
O5	$0.0373(9)$	$0.0469(11)$	$0.0433(10)$	$0.0015(8)$	$0.0174(8)$	$0.0026(8)$

supplementary materials

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	1.487 (3)	Cl1-O1	1.421 (2)
C1-C2	1.500 (3)	$\mathrm{Cl} 1-\mathrm{O} 2$	1.4218 (19)
C1-H1C	0.97	Cl1-O3	1.4339 (19)
C1-H1D	0.97	$\mathrm{N} 1-\mathrm{C} 1^{\text {i }}$	1.487 (3)
C2-N1	1.487 (3)	N1-H1B	0.90
C2-H2B	0.97	N1-H1A	0.90
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.97	O5-H5WB	0.77
$\mathrm{Cl} 1-\mathrm{O} 4$	1.417 (2)	O5-H5WA	0.82
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2$	109.6 (2)	$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 2$	110.46 (15)
N1 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.7	$\mathrm{O} 1-\mathrm{Cl} 1-\mathrm{O} 2$	109.05 (14)
C2-C1-H1C	109.7	$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 3$	110.15 (14)
N1 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.7	$\mathrm{O} 1-\mathrm{Cl} 1-\mathrm{O} 3$	109.38 (14)
C2-C1-H1D	109.7	$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 3$	108.62 (12)
H1C-C1-H1D	108.2	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1^{\text {i }}$	111.62 (19)
N1-C2-C1	109.7 (2)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.3
N1-C2-H2B	109.7	C1 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.7	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.7	C1 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.7	H1B-N1-H1A	108.0
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.2	H5WB-O5-H5WA	118.5
$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 1$	109.16 (16)		

Symmetry codes: (i) $-x+1,-y+2,-z+2$.

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.90	2.00	$2.875(3)$	165
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots 5^{\mathrm{iii}}$	0.90	2.14	$2.883(3)$	140
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iv}}$	0.90	2.49	$3.060(3)$	122
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{v}}$	0.90	2.56	$3.040(3)$	114
O5—H5WB $\cdots \mathrm{O}^{\mathrm{vi}}$	0.77	2.26	$2.999(3)$	161
O5—H5WA $\cdots \mathrm{O} 1$	0.82	2.59	$3.192(3)$	131
O5—H5WA $\cdots \mathrm{O} 4$	0.82	2.26	$3.040(3)$	159

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+2,-y+1,-z+2$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $-x+1,-y+1,-z+2$; (vi) $x+1, y, z$.

Fig. 1

Fig. 2

