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ABSTRACT: High-energy coordination polymers (CPs) based on nitrogen-rich ligands are an emerging class of explosives.
However, modulation of the energetic properties of high-energy CPs and the establishment of their structure−function
relationship remain in their infancy. In the present study, the utility of coordination polymerization as a technique to modulate
the application of critical energetic properties, such as density and thermal stability, of a secondary explosive, 5,5′-dinitro-2H,2H′-
3,3′-bi-1,2,4-triazole (DNBT), is presented. Ni-DNBT is a discrete octahedral complex with density lower than that of DNBT.
Cu-DNBT also contains octahedral metal coordination, similar to that in Ni-DNBT, as the building unit; however, the partial
reduction of CuII to CuI ions during the reaction and their unique geometrical preferences lead to linking of the octahedral CuII

complexes by tetrahedral CuI ions and render the resultant material a one-dimensional polymer with high density. In fact, Cu-
DNBT has the highest density among all of the DNBT-based energetics. Furthermore, Cu-DNBT exhibits thermal stability
superior to that of both Ni-DNBT and DNBT. Cu-DNBT is one of the two DNBT-based energetic materials and one of the few
energetics that are stable at temperatures higher than 300 °C.

■ INTRODUCTION

The design and synthesis of explosives with high density, good
thermal stability, and low sensitivity is an important subject of
contemporary research considering the central role that such
materials play in a variety of civilian and military applications.
The detonation velocity and pressure depend on the material
density, with high density tending to increase the explosive
power. Furthermore, low sensitivity to external stimuli and high
thermal stability are crucial for the safe handling of energetics.
Most advances to improve properties such as density, thermal
stability, and sensitivity rely on the synthesis of new molecular
entities based on existing motifs such as aliphatic and aromatic
nitro compounds.1−5 New approaches are emerging that have
the potential to offer a measure of control not readily achieved by
organic synthesis including cocrystallization,6,7 salt forma-
tion,8−10 synthesis of energetic composites with nanoscale
mixing of components,11−14 and coordination polymeriza-
tion.15−28 High-energy coordination polymers (CPs) have
emerged as potential next-generation energetic materials in the
past few years. Whereas most applications of CPs are only
possible when porosity is present,29−33 nonporous CPs with high
heats of formation and density can serve as energetic
materials.18,19 Energetic CPs have shown promise to offer
tunable sensitivity and thermal stability depending on the nature
of the metal ions or organic linkers.34 In the few examples where
it has been explored, energetic CPs exhibit thermal stability

different from that of constituent organic linkers.18,20 Tailoring
the thermal stability of organic energetics through coordination
polymerization remains an area ripe for exploration because so
few structure−activity relationships exist.
5,5′-Dinitro-2H,2H′-3,3′-bi-1,2,4-triazole (DNBT) is a sec-

ondary explosive that can be synthesized in two steps starting
from aminoguanidinium carbonate and oxalic acid.1,9 DNBT has
a high density (1.903 g cm−3), high heat of formation (285 kJ
mol−1), and formidable detonation velocity (8413 m s−1).1

Furthermore, DNBT is less sensitive to impact compared to
many of the state-of-the-art secondary military explosives [e.g.,
1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 1,3,5-trini-
troperhydro-1,3,5-triazine, and 2,4,6,8,10,12-hexanitro-
2,4,6,8,10,12-hexaazaisowurtzita-ne (CL-20)].7 Nitrogen-rich
heterocylic compounds, such as DNBT, have shown promise
as single-component energetic materials and are also on the
forefront of applications in energetic CPs. High-density energetic
materials based on DNBT, which exhibit good energetic
properties, have been achieved by the synthesis of nitrogen-
rich organic salts9 and cocrystallization with azole-based
energetic conformers.7 There are no reports, to the best of our
knowledge, that exploit coordination polymerization of DNBT
to modulate the energetic performance of the material. Herein,
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we have advantageously utilized two ionizable triazole rings with
multiple potential nitrogen-donor sites of DNBT for coordina-
tion with transition-metal ions to access high-density energetic
materials with high thermal stability. The structures and
properties of the new energetic materials and their structure−
function relationships are discussed.
The solvothermal reaction of DNBT with nickel nitrate and

copper nitrate salts in dimethylformamide (DMF)/water led to
Ni-DNBT and Cu-DNBT, respectively. Both materials were
characterized by single-crystal X-ray diffraction analysis, and it is
observed that DNBT undergoes complete deprotonation. Ni-
DNBT is a discrete anionic coordination complex, in which Ni2+

is in an octahedral disposition and is chelated by two dianions of
DNBT from the equatorial positions while the axial sites are
occupied by water molecules (Figure 1b). The negative charge of

the [Ni(DNBT)2(H2O)2]
2− complex is compensated for by

dimethylammonium cations that are generated in situ via the
decomposition of DMF (Figure 1c).35,36 The discrete metal
complex Ni-DNBT crystallizes as a hydrate. The uncoordinated
water is removed when the sample is dried under vacuum at
room temperature. Determination of the cell parameters before
(from single-crystal data; cf. the Supporting Information) and
after [from the powder X-ray diffraction (PXRD) profile of the
powdered material; cf. the Supporting Information] water
removal at room temperature indicates a contraction of the cell
volume by ca. 50 Å3 after removal of the uncoordinated water
molecules from the crystal (two molecules of water per unit cell).
Removal of uncoordinated water molecules under high vacuum
is further supported by elemental analysis (cf. the Experimental
Section). The copper complex of DNBT, obtained under
reaction conditions similar to those used for the synthesis of
Ni-DNBT, is a one-dimensional (1D) polymer. A fraction of the
CuII ions are reduced to CuI under the employed reaction
conditions, leading to the mixed-valent compound Cu-DNBT.
As expected, two different coordination environments are
observed for the copper ions with different oxidation states
(Figure 2a). Each CuII ion exhibits an octahedral coordination
mode similar to that observed with NiII in Ni-DNBT; i.e., two
dianions of DNBT chelate at the equatorial positions, and two
water molecules occupy the axial sites. The CuI ion, by contrast,
shows tetrahedral disposition and links two neighboring
octahedral CuII complexes, resulting in a 1D CP (Figure 2a).
The neighboring octahedral CuII complexes in the 1D chains are
oriented orthogonally by mediation of tetrahedral CuI ions. The
negative charge of the 1D polymer [CuICuII(DNBT)2(H2O)2]

−

is counterbalanced by dimethylammonium cations present in the
interstitial space (Figure 2b).

A closer look at the structure of Cu-DNBT reveals that each
tetrahedral CuI ion is chelated by two octahedral
[CuII(DNBT)2(H2O)2]

2− complexes. The presence of CuI,
formed by the in situ reduction of CuII under the employed
reaction condition, in Cu-DNBT renders an orthogonal
arrangement of the neighboring CuII complexes, which, in
turn, leads to close packing of the energetic DNBT dianions
(Figures 2a and 3b). Note that the nickel complex has a
crystallographic density of 1.714 g cm−3 at 85 K (calculated
including the uncoordinated water molecules), which is less than
that of the organic linker DNBT (1.903 g cm−3). Cu-DNBT, by
contrast, has a higher crystallographic density of 2.004 g cm−3 (at
85 K). Considering that uncoordinated water is removed in the
dry sample, the density of Ni-DNBT at room temperature is
calculated to be 1.694 g cm−3, whereas the room temperature
density for Cu-DNBT is 1.960 g cm−3. Clearly, different
geometrical preferences of CuII and CuI ions within Cu-DNBT
render the crystal structure of Cu-DNBT more efficiently
packed, leading to a higher density (Figure 3). In fact,Cu-DNBT
has the highest crystallographic density among all of the DNBT-
based energetic materials.7,9 Packing coefficients of the DNBT
dianion were calculated to compare quantitatively the efficiency
with which the energetic component is packed in the crystal
lattices of these complexes. Note that the packing coefficient of
any component refers to the fraction of a unit cell volume
occupied by that species. The calculations were performed based
on the conformation adopted by the DNBT dianion in the
respective metal complexes (geometries extracted directly from
the crystal structures). The packing coefficients of the dianionic
species in Ni-DNBT and Cu-DNBT are calculated to be 57.3%
(two anions per unit cell volume of 620.9 Å3) and 66.4% (four
anions per unit cell volume of 1071 Å3), respectively. The higher
packing coefficient of the DNBT dianion in Cu-DNBT results in
a higher energy density of the complex than in Ni-DNBT.
The performance of the DNBT-derived complexes was

investigated to determine properties including thermal stability,
heat of detonation, and sensitivity to impact. The thermal
decomposition temperature of the complexes was determined by
thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC). In TGA, the samples were heated from room
temperature to 600 °C at a 10 °Cmin−1 ramp rate. The energetic
compound DNBT undergoes thermal decomposition at 262 °C
(onset temperature; Figure 4). The discrete complex Ni-DNBT
exhibits apparently different thermal behaviors in TGA and DSC.
TGA reveals a continuous weight loss ofNi-DNBTwith an onset
temperature of 185 °C; the removal of coordinated water
molecules is only partially responsible for the weight loss, and
additional sublimation or decomposition must be occurring.
However, no corresponding heat change is observed at this
temperature in DSC. Instead, a broad exotherm above 240 °C

Figure 1. (a) Molecular structure of DNBT. (b) Octahedral
[Ni(DNBT)2(H2O)2]

2− complex with two anions of DNBT chelated
from the equatorial positions and two water molecules coordinated to
the axial positions. (c) Packing of the anionic nickel(II) complexes,
dimethylammonium ions, and uncoordinated water molecules in the
crystal structure of Ni-DNBT.

Figure 2. (a) 1D polymeric chain of Cu-DNBT consisting of an
alternating arrangement of CuI (purple) and CuII (cyan) ions. Note the
tetrahedral and octahedral coordination modes of CuI and CuII,
respectively. (b) Presence of dimethylammonium guests in the
interstitial space of the 1D polymer.
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consistent with thermal decomposition of the complex manifests.
Presumably, the NiII ion induces decomposition of DNBT in the
discrete complex Ni-DNBT. By contrast, the 1D CP Cu-DNBT
is thermally stable up to 310 °C, as revealed by TGA and DSC
(Figures 4 and 5). Cu-DNBT undergoes ∼3.3% weight loss

below 100 °C, which might be attributed to partial loss of water
molecules coordinated to the metal center (water contributes to
5.5 wt % of the complex). The complex starts to decompose
above 310 °C. Cu-DNBT is one of the very few energetics that
exhibits thermal stability above 300 °C.8,18,37,38 Furthermore, the
CP is thermally more stable than all of the energetic salts and
cocrystals of DNBT, except the guanidinium salt, which
decomposes at 335 °C.7,9 The high thermal decomposition
temperature of Cu-DNBT indicates that the energetic linker is
thermally desensitized in the polymeric structure.
The heat of detonation is another parameter to measure the

performance of energetic materials. The heat released by thermal
decomposition of Ni-DNBT and Cu-DNBT was determined by
integrating the DSC curves to estimate the heat of detonation.

The DSC experiments were carried out at a heating rate of 5 °C
min−1 using high-pressure hermetic pans, which can withstand
pressure up to 100 bar. DNBT exhibits a sharp endotherm at 262
°C (onset temperature), corresponding to melting with
subsequent decomposition, releasing heat. The heat evolution
values from thermal decomposition ofNi-DNBT andCu-DNBT
are ca. 1950 and 1980 J g−1, respectively.
Sensitivity is another key performance metric for energetic

materials. Explosives are categorized, according to their
sensitivity, into primary and secondary explosives.39 Primary
explosives have characteristically fast deflagration to detonation
transitions when initiated via a small stimulus, and these are used
as initiators in explosions. Secondary explosives are compara-
tively insensitive to external stimuli and release much higher heat
compared to primary explosives upon detonation. Insensitivity to
external stimuli is important for the safe handling and
transportation of explosive materials, particularly for secondary
explosives. The sensitivity of the energetic complexes to impact
was measured by impact small-scale drop-testing and repre-
sented by Dh50, i.e., the height for which there is 50% probability
of explosion of an energetic material when a drop weight impacts
the material from that height. Approximately 2 mg (±10%)
samples were crimped in a nonhermetic DSC pan for testing. A
drop weight of 5 lb. was allowed to freefall on the DSC pan
containing the sample from variable distances several times to
determine a reproducible Dh50. DNBT was found to be
insensitive to impact at a 145 cm height, the maximum height
of the testing apparatus. It should be noted that the well-known
secondary explosives ε-CL-20 and β-HMX exhibited Dh50 values
of 29 and 55 cm, respectively, in the same apparatus.40 Drop
weight testing reveals that both coordination complexes are also
insensitive to impact for the same weight and height and can,
therefore, be preliminarily classified as impact-insensitive
secondary explosives. However, from the DSC experiments, it
is clear that the detonation of these materials can be initiated by
heat. To test whether the detonation can be reliably induced by
heat, the initiator experiments were carried out on a hot plate at
different temperatures. Whereas Ni-DNBT detonated consis-
tently when dropped on a hot plate at 260 °C, Cu-DNBT
underwent deflagration above 340 °C.
In summary, we have utilized coordination polymerization as a

tool to access high-density energetic materials fromDNBT. Both
of the energetic materials Cu-DNBT and Ni-DNBT contain
octahedral metal complexes as a basic structural unit; the
presence of mixed-valent CuII/CuI ions in Cu-DNBT and their
different geometrical preferences result in the formation of a 1D
polymeric structure. Different geometrical dispositions of the
metal ions in different oxidation states lead to dense packing of

Figure 3. (a) Packing of the octahedral nickel(II) complexes inNi-DNBT. (b) Packing of the 1D polymeric chains in Cu-DNBT. Note the orthogonal
alignment of the [Cu(DNBT)2(H2O)2]

2− complexes in the 1D chain through chelation to tetrahedral CuI ions.

Figure 4. TGA curves of DNBT, Ni-DNBT, and Cu-DNBT.

Figure 5. DSC profiles of DNBT, Ni-DNBT, and Cu-DNBT.
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the energetic component DNBT in the crystal lattice.Cu-DNBT
has the highest crystallographic density among all of the DNBT-
based energetic materials, and both of the complexes are impact-
insensitive. Additionally,Cu-DNBT exhibits exceptional thermal
stability because it is one of the few energetic materials that has a
high thermal decomposition temperature, above 300 °C. Cu-
DNBT, by virtue of being a 1D polymeric material, is a better
energetic material than either DNBT or Ni-DNBT in terms of
the density and thermal stability. Thus, it is demonstrated that
coordination polymerization can be employed to synthesize
powerful energetic materials of high density and thermal stability
from existing energetic materials if suitable modes of
coordination are exploited.

■ EXPERIMENTAL SECTION

Caution! No unplanned detonations were encountered during the
experiments with DNBT and the complexes Cu-DNBT and Ni-
DNBT. However, these materials are powerful explosives and might
cause severe injury upon explosion. Proper safety protocols were
followed during the experiments to prevent any explosion resulting
f rom impact, shock, or f riction.
Synthesis of Ni-DNBT. To a mixture of DNBT (Lawrence

Livermore National Laboratory; 5.05 mg, 0.0223 mmol) and
Ni(NO3)2·6H2O (19.3 mg, 0.0665), taken in a screw-capped vial,
were added 0.5 mL of DMF, 1 mL of water, and 20 μL of
concentrated HNO3. The reaction mixture was sonicated for 5
min and then heated at 85 °C for 2 days. Subsequently, the
reaction mixture was allowed to cool to room temperature. Pale-
green crystals were collected by filtration, washed thoroughly
with a 2:1 water/DMF mixture, and dried by applying a vacuum
at room temperature. Yield: 4.82 mg (66.4% based on DNBT).
CHN anal. Calcd for C12H20N18O10Ni: C, 22.69; H, 3.15; N,
39.70. Found: C, 22.63; H, 3.14; N, 39.60. (The uncoordinated
water molecules are removed when the sample is dried under
high vacuum.) IR (solid, cm−1): ν̃ 3395, 3025, 2787, 2436, 1625,
1609, 1528, 1471, 1446, 1401, 1359, 1305, 1232, 1160, 1142.
Synthesis of Cu-DNBT. This complex was synthesized by

employing reaction conditions similar to those used for the
synthesis of Ni-DNBT using DNBT (5.02 mg, 0.0222 mmol)
and Cu(NO3)2·2.5H2O (10.2 mg, 0.0440 mmol). Yield: 5.46 mg
(73.6% based on DNBT). CHN anal . Calcd for
C10H12N17O10Cu2: C, 18.265; H, 1.83; N, 36.23. Found: C,
18.42; H, 1.76; N, 36.22. IR (solid, cm−1): ν̃ 3633, 3585, 3053,
2825, 2494, 1600, 1535, 1430, 1395, 1364, 1316, 1301, 1199,
1193, 1178.
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