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Since the black powder, the first known explosive, was
discovered by ancient Chinese in the seventh century,
people have been finding powerful, stable, reliable and
low-cost energetic materials for military equipment and
civil industry. To obtain a better explosive performance,
an efficient strategy is to load unstable chemical bonds
[1–3], as well as to combine fuel with oxidizer compo-
nents in a proper ratio for achieving sufficient combus-
tion and rapid detonation [4–6]. An effective way is to
incorporate fuel and oxidizer properties into a single
molecule [7], as demonstrated by a series of classical or-
ganic nitro group/nitrogen-rich molecules, such as trini-
trotoluene (TNT), pentaerythritol tetranitrate (PETN),
cyclotrimethylene trinitramine (RDX), cyclote-
tramethylene tetranitramine (HMX), hexanitrohex-
aazaisowurtzitane (CL-20) and octanitrocubane (ONC)
(Fig. S1). Loading more nitro groups and higher struc-
tural tension into a single molecule does improve ex-
plosive performance, but usually leads to complicated and
not cost-effective synthetic procedures. By a trade-off of
detonation performance and cost, HMX is regarded as the
best military high-energetic explosives nowadays [7], al-
though it is neither the most powerful one nor the
cheapest one.
Parallel to the intensive studies on molecule engineer-

ing on the backbone of nitrogen-rich organic energetic
molecules [8,9], the exploration of advanced energetic
materials extends to the crystal engineering on their en-
ergetic co-crystals [10–13], energetic salts [14–20], as well
as coordination polymers or metal-organic frameworks
[21–27]. The essential strategy is to control the inter-
molecular packing/linkage of the energetic organic fuel
and oxidizer components in crystals by non-covalent
interactions to modify/enhance the explosive perfor-
mance and/or to reduce the sensitivity to a practicable
level. However, for a specific energetic molecular com-
ponent, it is highly challenging to predict/engineer the

crystal structure of its co-crystals, salts, or metal-organic
frameworks [10], and the examples with good detonation
performance, high stability and low cost are still scarce.
Here we present a promising solution, i.e., assembly of

both low-cost organic fuel and oxidizer components into
a closely packed, high-symmetry ternary compounds
(vide infra), to achieve advanced energetic materials with
a nice combination of high explosive power, high stabi-
lity, and low cost. The presented materials belong to the
so-called molecular perovskites [28] with a general for-
mula of ABX3, which topologically mimic the cubic
structure of the very well-known inorganic perovskites,
the simplest high-symmetry structure for ternary com-
pounds, but have at least one organic molecular compo-
nent (usually A component). Recently, molecular
perovskites have attracted growing attention, as illu-
strated by the extensive studies on methyl-ammonium
lead iodide for high performance solar cells [29–32], and
the phase transitions together with the relevant switching
physical properties [33–35]. In the course of our in-
vestigation on relevant molecular perovskites [36], we
discovered that, the well-known, low-cost oxidative per-
chlorate anion as X component, and compatible fuel or-
ganic cation as A component, can be easily assembled
into molecular perovskites by one-pot reaction. Such
simple synthetic approach led to a new class of high-
energetic materials, (H2dabco)[M(ClO4)3] (DAPs, dabco =
1,4-diazabicyclo[2.2.2]octane, M = Na+, K+, Rb+ and NH4

+

for DAP-1, -2, -3 and -4, respectively). This sort of low-
cost materials not only has very different structures and
components compared with the well-known high-en-
ergetic explosives, but also has a high detonation per-
formance comparable to HMX and even CL-20, and a
much higher thermal stability than them.
Non-hygroscopic powders of DAPs were obtained in a

high yield (>90%) by separating the precipitate product
from the one-pot reactions of mixing aqueous solutions
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of dabco, perchloric acid, and the corresponding per-
chlorate salt in a molar ratio of 1:2:1 at room temperature.
The single-crystal X-ray diffraction at 232 K indicates that
DAPs are isomorphous and crystallized in the cubic space
group Pa 3− (No. 206). As shown in Fig. 1, the structure of
DAPs can be simply described as perovskite type, by re-
garding H2dabco

2+ as A-site cation, M+ as B-site cation
and ClO4

− as X-bridges. Each M+ ion is surrounded by
twelve oxygen atoms from six ClO4

− anions, while each
ClO4

− anion bridges two M+ ions, forming a three-di-
mensional anionic framework consisting of cages that are
filled by H2dabco

2+ cations. It is worth noting that, al-
though DAP-1, -2 and -3 have B-site alkali ions with
significantly different ion radius (coordination number =
12): Na+ (1.39 Å) < K+ (1.64 Å) < Rb+ (1.72 Å)[37], their
average M···Cl atomic distances vary in a narrow range of
3.551(1)–3.616(1) Å (Table S2). That is to say, the size of
cage unit is almost independent of the M+ ions, because
the steric requirement of H2dabco

2+ cations prevents the
further contraction of anionic framework. In this sense,
such perovskite structure leads to significant structural
tension in DAPs, and the smaller M+ ion is, the stronger
structural tension is.
As shown in Fig. 2 and Table 1, the decomposition

temperatures (onset) of DAPs range from 344 to 365°C,
which are much higher than those of the famous single
explosives such as HMX (280°C), RDX (204°C), and CL-
20 (210°C). Such high thermal stability of DAPs should
be ascribed to the steady covalent bonds of molecular
components as well as the structure reinforcement by
strong Coulombic interactions between the alternately-
packed cations and anions in the unique perovskite

structure.
As evaluated by using EXPLO5 V6.04.02 program [38]

(Fig. 3 and Table 2), DAP-1, -2 and -4 have excellent
detonation performances superior to HMX and com-
parable to CL-20. Their detonation heats in a descending
order are: 10.38 kJ g–1 (DAP-4) > 8.89 kJ g–1 (DAP-1) >

Figure 1 The perovskite structure of DAP-1. For clarity, only one ClO4
−

bridge and one H2dabco
2+ cation are shown, while the others are re-

presented by green bars and yellow spheres, respectively.

Figure 2 Differential scanning calorimetry graphs of DAPs.

Table 1 Thermal data of DAPs from DSC measurements

Compounds Td
a (°C) Tp

b (°C) QDSC (kJ g
−1)

DAP-1 344 361 4.40

DAP-2 364 377 4.08

DAP-3 352 369 3.80

DAP-4 365 383 5.18

a) The onset decomposition temperatures.b) The peak decomposition
temperatures. c) The decomposition heat recorded by DSC.

Figure 3 Bar chart representation of detonation parameters calculated
by EXPLO5 V6.04.02, for DAP-1, DAP-2, DAP-4, and the well-known
explosive materials including TNT, RDX, HMX and CL-20.
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7.09 kJ g–1 (DAP-2), and all are higher than those of
classic high explosives such as RDX (5.74 kJ g–1), HMX
(5.72 kJ g–1) and CL-20 (6.22 kJ g–1). The detonation ve-
locities of DAPs are in range of 9.224–9.588 km s–1,
higher than that of HMX (9.152 km s–1) and close to that
of CL-20 (9.598 km s–1), meanwhile their detonation
pressures (44.2–49.4 GPa) are much higher than that of
HMX (39.1 GPa), and particularly, both of DAP-4
(49.4 GPa) and DAP-1 (48.3 GPa) are even higher than
that of CL-20 (45.9 GPa).
It is worth noting that the large difference in denotation

heats (3,872 – 3,202 = 670 kJ mol−1) between DAP-1 and
DAP-2 is mainly ascribed to their large difference in
combustion heats (5,685 – 4,945 = 740 kJ mol−1). Mean-
while, their combustion products only differ in metal
chlorides, in which NaCl has an enthalpy of formation
(−411.1 kJ mol−1) slightly higher than that of KCl
(−436.7 kJ mol−1), and the smaller Na+ ions lead to the
stronger structural tension of the anionic framework in
DAP-1 than that in DAP-2. These facts strongly imply
that, the released detonation heats of DAPs do not just
come from the breaking and recombination of covalent
bonds during the denotation reaction, but also are no-
tably contributed by the structural tension in the per-
ovskite structure. Thus, such perovskite structure plays an
important role in enhancing the dentation heat for DAPs.
For the metal-free member, i.e., DAP-4, it could be

regarded as the modification of ammonium perchlorate
(AP), the most-commonly-used oxidizing component in
solid rocket propellants. The replacement of alkali metal
ions by NH4

+ ions enables DAP-4 to give a much better
denotation performance than the metal-contained mem-

bers, due to the extra oxidation of ammonium to release
more denotation heat and gas products. Moreover, the
denotation of DAP-4 gives an extremely high calculated
specific impulse (Isp) value of 344 s, much higher than
those of RDX (267 s), HMX (266 s) and CL-20 (272 s)
(Table 3). As an increase of about 10 s in Isp can double
the payload of a rocket [4], one could expect that DAP-4
may significantly improve the performance for the pre-
sently used propellants.
Distinguishing from the other high-energy-density

materials which are mainly derived from nitrogen-rich
heterocycles and their cations, DAPs present a new class
of single explosives based on ternary compounds that are
uniform versions of oxidants and fuels at molecular level,
in which the size-matched fuel cations (H2dabco

2+) are
tightly confined in the cubic cages composed of oxidative
anions (ClO4

−) in a triple molar ratio. The design of
molecular perovskite energetic materials retrospects the
history of composite explosives from black powders to
modern industrial emulsion explosives, at which pursuing
better and better intimacy of oxidants and reductants is a
direct means to achieve better detonation performance.
But instead of making improvements of mechanical agi-
tation, perovskite structure provides an alternative and
dense packing of each fuel molecules with triple oxidant

Table 2 Detonation properties of well-known explosives and DAPs

Compound ρa (g cm−3)
ΔHf

b

(kJ mol−1)
Qc

(kJ g−1)
Dc

(km s−1)
Pc

(GPa)
IS
(J)

FS
(N)

OBe

(%)

TNT 1.65 −59.3 4.36 6.915 19.4 15 353 −24.7

RDX 1.80 70.3 5.74 8.817 34.9 7.4 120 0

HMX 1.91 74.8 5.72 9.152 39.1 7.5 112 0

CL-20 2.04 397.8 6.22 9.598 45.9 4 48 11.0

DAP-1 2.02a 1013.7b 8.89 9.306 48.3 17 36 0

DAP-2 2.04a 247.3b 7.09 9.224 44.2 16 42 0

DAP-3d 2.16a / / / / 22 28 0

DAP-4 1.87a 1904.2b 10.38 9.588 49.4 23 36 −5.6

a) ρ is the density of powder sample measured by capillary powder X-ray diffraction at room temperature; b) ΔHf is the heat of formation calculated
from heat of combustion tested by oxygen bomb; c) Q is the heat of detonation, D is the detonation velocity, and P is the detonation pressure. The
detonation parameters were calculated by EXPLO5 V6.04.02; d) since EXPLO5 doesn’t cover rubidium element, the detonation parameters of DAP-3
could not to be calculated; e) oxygen balance based on CO for CaHbNcMdCleOf, M as alkali metal ion, were calculated by: OB[%] = 1600[f-a-(b-e+d)/2]/
MW, where MW is molecular weight.

Table 3 Specific impulse of well-known oxidizing agents, explosives
and DAP-4

Com-
pound AP ADN TNT RDX HMX CL-20 DAP-4

Isp
a (s) 157 202 206 267 266 272 344

a) The specific impulses were calculated by EXPLO5 V6.04.02.
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groups at molecular level for achieving the ultimate
uniform in a single explosive, resulting in good oxygen
balances same with (or close to) those of HMX and RDX,
high densities, and eventually, excellent detonation
properties. The steady covalent bonds of molecular
components, together with the structural reinforcement
by strong Coulombic interactions between the cations
and anions in perovskite structure, achieved high thermal
stability for DAPs, as well as an isotropic response to the
external stimuli [39] by the cubic symmetry to achieve
low impact sensivity (Table 2). In addition, different from
their raw materials that are binary salts with serious hy-
groscopicity, DAPs are ternary ionic crystals without
heavy-metal ions, and feature with non-hygroscopic,
non-volatile, and non-weathering characteristics, which
are beneficial for the storage and transportation.
Moreover, as demonstrated by DAPs with different B-

site cations, the molecular perovskites provide an op-
portunity to tailor the performances by taking the tun-
able/modifiable characteristics of the three components.
In fact, we have recently found several analogues of
DAPs, by replacing H2dabco

2+ with piperazine-1,4-diium
cation on the A component, and/or replacing perchlorate
with nitrate on the X component, and also some solid
solutions of DAPs. A detailed study is now underway for
these new materials. Regarding the diversities of the or-
ganic cations (especially lost-cost but high-calorific-value
ones), oxidative anions and the high-symmetry crystal
structure, the molecular design strategy illustrated by
DAPs opens a new avenue for designing the advanced
energetic materials for practical uses.
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分子钙钛矿含能材料
陈劭力, 杨子润, 王斌杰, 尚宇, 孙林颖, 何纯挺, 周浩龙, 张伟雄*, 陈小明*

摘要 设计合成兼具良好爆轰性能、高稳定性和低成本的含能化合物是发展实用含能材料的关键. 本文报道了一类新型分子钙钛矿含能
化合物, 它们可以通过使用低成本原料经简单一锅反应制备. 作为氧化组分的高氯酸根阴离子和作为燃料组分的还原性有机阳离子交替
紧密堆积于钙钛矿结构中, 使该类化合物不仅有比目前军用含能炸药(例如RDX和HMX)更优异的爆炸性能, 而且有更高的稳定性; 其中无
金属组分的分子钙钛矿含能化合物具有与CL-20相当的爆炸性能以及更高的比冲(约344秒). 这种将低成本有机燃料组分和氧化剂组分组
装在高对称性三元晶体结构的分子组装策略为设计有实用前景的含能材料提供了新思路.
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