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Abstract

An analytical model for calculating the propagation time of shock wave in a wave shaper is presented in this study. The calculated results show
that the contours of three typical detonation waves, such as conical detonation wave, spherical detonation wave, and planar detonation wave, can
be formed in the main charge by changing the thickness of wave shaper.

The results show that the planar detonation wave do better than the conical detonation and the spherical detonation wave in increasing the
length–diameter ratio of explosively-formed projectiles (EFP) and keep the nose of EFP integrated. The detonation wave can increase the
length–diameter ratio of EFP when the wave shaper has the suitable thickness.
© 2016 Production and hosting by Elsevier B.V. on behalf of China Ordnance Society.
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1. Introduction

Explosively-formed projectiles (EFPs) are used in numerous
modern ammunition systems because of their advantages of
effective stand-off and strong secondary effects after penetra-
tion. For the purpose of improving the penetration performance
of warheads, one of the design goals of any designer is to obtain
the most elongated and compact projectile with a high initial
velocity [1]. Powerful explosives [2], detonation wave shaping
[3], and the use of high-density and high-ductility liner mate-
rials are the main ways to achieve this goal [4]. The detonation
wave shaping is considered to be the most efficient way of
improving the penetration performance of warheads [5].
Embedding a wave shaper in charge is one of the ways to shape
a detonation wave [6–8]. Weimann [1], Murphy et al. [6], and
Men et al. [9] reported that the EFP length could be increased
if a wave shaper is placed in charge. Zhang et al. [8,10] com-
pared the performances of EFPs formed from warheads with
and without wave shaper, and the results indicated that EFP
formed from the warhead with a wave shaper has a higher
velocity, larger length–diameter ratio, and higher penetration
capability compared to that formed without a wave shaper.
However, the researchers have not explored how to adjust the

detonation wave contours shaped by the thickness of wave
shaper on the formation of EFP.

An analytical model for calculating the propagation time of
shock wave in the wave shaper is presented in this study. The
time of the penetrating detonation wave reaching the liner and
the time of the diffracted detonation wave reaching the liner can
be determined. The calculated results show that the contours of
three typical detonation waves can be formed in the main
charge by changing the thickness of wave shaper. The effects of
detonation wave contours on the formation of EFP were studied
using the LS-DYNA software.

2. Analytical models

2.1. The initial parameters of shock wave in wave shaper

Given that the shock impedance of the Plexiglas is less than
that of the explosive, the transmitted wave in wave shaper is a
shock wave when the detonation wave impacts the wave shaper
which is made of Plexiglas, whereas the reflected wave is a
rarefaction wave. The initial parameters of the shock wave in
wave shaper can be calculated by the following equation [11]
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where D is the velocity of detonation wave; PCJ is the CJ
detonation pressure; γ is the exponent in the polytropic equation
of state for explosive; ux is the particle velocity; px is the
pressure of shock wave; ρm0 is the density of Plexiglas; and a
and b are the material constants of Plexiglas.

2.2. Output parameters of shock wave in wave shaper

Given that the shock impedance of Plexiglas is less than that
of the explosive, both the transmitted and reflection waves are
the shock waves. The Hugoniot equations of Plexiglas and
explosive are

p a b u ux x1 01 1 1= +( )ρ (2)

p a b u ux x2 02 2 2= +( )ρ (3)

As shown in Fig. 1, I and II represent the Hugoniot curves of
Plexiglas and explosive, respectively, I′ is the mirror curve of I
about N, the pressure pM and particle velocity uM at the inter-
section point M are the initial parameters of shock wave in the
main charge, M′ is the mirror point of M about N, and the
pressure pN and particle velocity uN at point N are the output
parameters of shock wave in the wave shaper.

The criterion of shock wave initiating the explosive adopts
the critical pressure criterion. If the critical pressure of the
explosive pc is known, uM′ and uM can be calculated by substi-
tuting p pM = c into Eqs. (2) and (3). Given that M′ is the mirror
point of M about N, uN = (uM + uM′)/2.0. Finally, pN can be cal-
culated by substituting uN into Eq. (2).

2.3. Critical thickness of wave shaper

Given that the attenuation of shock wave in inert medium is
very complex, the attenuation law of shock wave in an inert
medium can be expressed as an empirical formula [11]

p px
x= −

0e
α (4)

where p0 is the initial pressure in the inert medium; α is the
attenuation coefficient of the inert medium; x is the propagation
distance of shock wave in the inert medium; and px is the
pressure of shock wave corresponding to distance x.

The critical thickness of wave shaper hc can be determined
by substituting the initial pressure p0 and output pressure pN in
Eq. (4).

2.4. Propagation time of shock wave in wave shaper

The velocity of shock wave in the wave shaper can be
expressed as

u a buxs = + (5)

where us is the velocity of shock wave; and a and b are the
constants of wave shaper material.

According to Eqs. (2), (4), and (5), the propagation distance
x can be expressed as

x
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A series of points (us, x) in the warhead can be obtained from
Eq. (6), and the function of us about x can be obtained by fitting
these points
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The propagation time of shock wave in wave shaper can be
written as
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where h is the thickness of wave shaper; and A, B, and C are
constants.

In the calculation, the 8701 explosive which consists of 95%
RDX and 5% TNT was used as the subsidiary charge, with
ρ = 1.713 g/cm3, D = 7.98 mm/μs, and PCJ = 28.6 GPa [12].
The material of wave shaper was Plexiglas with ρ = 1.184 g/
cm3, a = 2.572 mm/μs, and b = 1.536 [13]. The material of the
main charge was an 8701 explosive with ρ = 1.7 g/cm3,
a = 2.95 mm/μs, and b = 1.58 [14]. The attenuation coefficient,
α, of Plexiglas is 0.1186 [15]. The critical pressure of the 8701
explosive is 2.4 GPa [16].

Initial pressure p0 and particle velocity u0 in the wave shaper,
output pressure pn, particle velocity un, critical thickness hc of
wave shaper, and the constants in Eq. (8) can be determined
according to the parameters mentioned above, which are
p0 = 21.73 GPa, u0 = 2.7194 mm/μs, pN = 1.9288 GPa,
uN = 0.49 mm/μs, hc = 20.4 mm, A = 0.0053, B = 25.7544, and
C = 24.4835.

3. Contours of three typical detonation waves

The configuration of EFP warhead with a wave shaper is
shown in Fig. 2.

As shown in Fig. 2, two propagation paths for the detonation
wave are created after the initiator initiates the subsidiary
charge, where one path climbs the wave shaper and the other
passes through the wave shaper. The detonation wave climbing
the wave shaper is called the diffracted detonation wave, and the
detonation wave passing through the wave shaper is called the
penetrating detonation wave. The times of the diffracted and
penetrating detonation waves reaching the liner vary with the
change in the thickness of wave shaper. The contours of three
typical detonation waves, such as conical detonation wave,

Fig. 1. u–p curves of Plexiglas and main charge.
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spherical detonation wave, and planar detonation wave (the
pseudo planar wave and quasi planar wave all are considered as
planar detonation wave), can be created in the main charge.

When the time of diffracted detonation wave reaching the
pole t1 (on the axis) of the liner is less than that of the middle
detonation t2, or if the thickness of wave shaper is larger than
the critical thickness, then the diffracted waves collide at the
axis of the charge after climbing the wave shaper. If the
incident angle is above the critical angle, the Mach wave may
emerge at the top of the liner [8,17]. The conical wave
emerges in the main charge, as shown in Fig. 3(a). The
diffracted detonation wave can greatly increase the length–
diameter ratio of EFP [3,18], but the Mach wave may break
the nose of EFP [19].

When t1 is significantly longer than t2, the diffracted and
penetrating detonation waves reach the main charge, but the
penetrating detonation wave has a critical function in the main
charge. The spherical detonation wave emerges in the main
charge, as shown in Fig. 3(b). The spherical detonation wave
greatly suppresses the increase in EFP length–diameter ratio
[3,18].

When t1 is approximately equal to t2, the diffracted and
penetrating detonation waves reach the main charge. The
diffracted detonation wave cannot collide at the axis of the
charge because of the presence of the penetrating detonation
wave. Thus, the Mach wave can be avoided. The planar
detonation wave may emerge in the main charge, as shown in
Fig. 3(c). The diffracted detonation wave can greatly increase
the EFP length–diameter ratio, and the nose of EFP is kept
integrated because the Mach wave is not present at the top of
the liner.

The diameter of the charge is 80 mm and the diameter of the
wave shaper is 64 mm. For different thicknesses of the wave
shaper, the calculated results of t1 and t2 are listed in Table 1.

The shortest path around wave shaper was considered and
the turning corner effect was ignored in the present paper.
Table 1 shows that, when the thickness of wave shaper
increases, t1 increases minimally, t2 increases significantly, and
t2 gradually approaches t1. Therefore, the wave contour in the

Fig. 2. Configuration of EFP warhead with a wave shaper.

Fig. 3. Contours of three typical detonation waves. (a) Conical detonation
wave; (b) Spherical detonation wave; (c) Planar detonation wave.

Table 1
Calculated results of t1 and t2 for different thicknesses of wave shaper.

h 5 10 15 20
t1 13.14 13.23 13.32 13.44
t2 9.37 9.75 10.34 11.13
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main charge changes from a spherical detonation wave contour
into a planar detonation wave contour with the increase in the
thickness of the wave shaper. The area of the penetrating deto-
nation wave decreases, whereas the area of the diffracted deto-
nation wave increases when the thickness of wave shaper is
increased. When the thickness of wave shaper is approximately
equal to the critical thickness, the area of the penetrating deto-
nation wave is minimal, whereas the area of the diffracted
detonation wave maximizes.

4. Simulation research and experimental validation

4.1. Detonation wave contour validation

To verify the reliability of the calculated results, a simulation
research was carried out for three warheads by using the

LS-DYNA software. The diameters and lengths of all charges
are 80 mm, and the diameter of the wave shaper is 64 mm. The
thicknesses of the wave shapers are 35 mm, 5 mm, and 16 mm.
The 8701 explosive was used in the calculation and the liner
was made of copper. The parameters of all material models used
in the calculations are found in Refs. [12,20]. The “ignition and
growth” model was used as the model of the explosive detona-
tion in the simulation. The detonation wave contours at different
times for the three kind of warheads structure are shown in
Fig. 4. The shapes of EFP for the three kind of warheads
structure are shown in Fig. 5.

As shown in Fig. 4(a), the thickness of the wave shaper is
larger than the critical thickness, and the shock wave passing
though the wave shaper cannot initiate the main charge. Thus,
no penetrating detonation wave is present in the main charge.

Fig. 4. Simulation results for three typical detonation wave contours. (a) Conical detonation wave; (b) Spherical detonation wave; (c) Planar detonation wave.
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The diffracted detonation waves collide at the axis of the charge
after climbing the wave shaper, and the Mach wave emerges in
the charge. The pressure of the Mach wave is higher than the
pressure of detonation wave.

Fig. 4(b) shows that the thickness of the wave shaper is small
and the shock wave passing though the wave shaper initiates the
main charge. The diffracted and penetrating detonation waves
reached the main charge. The penetrating detonation wave has
a critical function in the main charge.

As shown in Fig. 4(c), the shock wave passing though the
wave shaper initiated the main-charge. The diffracted and pen-
etrating detonation waves reached the main charge and the liner
at the same time. However, an overdriven detonation was
formed in the charge because the diffracted detonation wave
collided with the penetrating detonation wave. However, the
pressure of the overdriven detonation wave is slightly higher
than the pressure of detonation wave.

The contours of three detonation waves in Fig. 4 are in
agreement with those in Fig. 3, thereby indicating that the
calculated results in Table 1 are reliable.

As shown in Fig. 5(a), the length–diameter ratio of EFP was
large, but the nose of EFP was splitted into two pieces because
the diffracted detonation wave greatly increased the length–
diameter ratio.

As shown in Fig. 5(b), the length–diameter ratio of EFP is
small because the penetrating detonation wave has a critical
function in the charge and the spherical wave prevents an
increase in the length–diameter ratio of EFP.

As shown in Fig. 5(c), the length–diameter ratio of EFP is
large, and the nose of the EFP is completed because the dif-
fracted detonation wave can greatly increase the EFP length–
diameter ratio. The nose of EFP was kept intact because no
Mach wave was present at the top of the liner.

When the thickness of wave shaper is approximately equal to
the critical thickness, the area of the penetrating detonation
wave is minimal and the area of the diffracted detonation wave
maximizes. The thickness of the wave shaper should be less
than and approximately equal to the critical thickness so that the
diffracted detonation wave can increase the length–diameter
ratio of EFP.

4.2. Experimental validation

To verify the reliability of the simulated results, X-ray
experiment was carried out on a warhead. The warhead con-
figuration used in the X-ray experiment was the same as the one
used in Fig. 5(a). The layout of the X-ray imaging experiment is
shown in Fig. 6. The comparison between the simulated and
experimental results is shown in Table 2, and the X-ray image of
EFP is shown in Fig. 7. The image was taken at 350 μs after the
explosive was initiated, at which time the EFP was formed.

In Table 2, v, L, d, and λ represent the velocity, length,
diameter, and length–diameter ratio of EFP, respectively.

The results in Table 2 and the image in Fig. 7 indicate that
the experimentally generated projectile forms can be success-
fully reconstructed through simulation, and the simulated
results are reliable.

5. Conclusions

1) The contours of three typical detonation waves can be
formed in the main charge by changing the thickness of
wave shaper. The conical detonation wave can greatly
increase the EFP length–diameter ratio, but the Mach
wave may break the nose of EFP. The spherical detonation
wave suppresses the increase in EFP length–diameter
ratio. The planar detonation wave can increase the EFP
length–diameter ratio and keep the nose of the EFP intact.

Fig. 5. Shapes of EFP corresponding to the three typical detonation wave
contours. (a) Conical detonation wave; (b) Spherical detonation wave; (c) Plane
detonation wave.

Fig. 6. Layout of X-ray imaging experiment.

Table 2
Comparison between simulated and experimental results.

V/(m −1) L/mm d/mm λ

Simulation 2049 97.4 20.2 4.82
Experiment 1994 107.5 19.2 5.60
Error/% 2.8 9.4 5.2 13.9

Fig. 7. X-ray image of EFP formation.
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2) The area of the penetrating detonation wave decreases,
whereas the area of the diffracted detonation wave
increases with the increase in the thickness of wave shaper.
The thickness of wave shaper should be less than or
approximately equal to the critical thickness so that the
planar detonation wave can increase the length–diameter
ratio of EFP.
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