See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244287303

Vibrational spectra of L-arginine nitrates

Article in Journal of Molecular Structure · February 2008

DOI: 10.1016/j.molstruc.2007.03.032

CITATIONS	5	READS	
27		106	
2 autho	rs:		
	Aram Petrosyan National Academy of Sciences of Armenia		R. P. Sukiasyan
	118 PUBLICATIONS 1 249 CITATIONS		17 PURI LCATIONS 320 CITATIONS
	SEE PROFILE		SEE PROFILE

Some of the authors of this publication are also working on these related projects:

DISCOVERY OF SALTS OF DIMETHYLGLYCINE WITH DIMERIC CATION, ANSEF GRANT: condmatex-4423 View project

All content following this page was uploaded by Aram Petrosyan on 13 December 2017.

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Available online at www.sciencedirect.com

Journal of Molecular Structure 874 (2008) 51-56

www.elsevier.com/locate/molstruc

Vibrational spectra of L-arginine nitrates

A.M. Petrosyan *, R.P. Sukiasyan

Molecule Structure Research Center, NAS of Armenia, Azatutyan Ave., 26, Yerevan 0014, Armenia

Received 9 February 2007; received in revised form 13 March 2007; accepted 17 March 2007 Available online 25 March 2007

Abstract

Crystals L-arginine $HNO_3 \cdot 0.5H_2O$ and L-arginine $2HNO_3$ have been studied by attenuated total reflection Fourier transform infrared (FTIR ATR) and Fourier transform Raman spectroscopy with taking into account their crystal structures. © 2007 Elsevier B.V. All rights reserved.

Keywords: L-Arginine nitrates; FTIR; ATR; Raman spectra

1. Introduction

Intensive research of crystalline salts of L-arginine (L-Arg) as nonlinear optical (NLO) materials is now in progress. The present paper deals with discussion of vibrational spectra of the crystals formed in the system L- $Arg + HNO_3 + H_2O$. A number of papers devoted to research of this system has been already published [1-7]. Monaco et al. [1] were the first who investigated this system and have obtained L-arginine nitrate in form of fine powder. In Ref. [2] it has been shown that from this system in addition to powdered L-arginine nitrate it is possible to obtain crystalline L-arginine dinitrate L-Arg-2HNO₃. Crystal structure of L-Arg 2HNO₃ has been determined and IR spectrum registered with nujol was reported. Originally L-Arg-2HNO₃ crystals were obtained in form of elongated thin plates $26 \times 5 \times 1 \text{ mm}^3$ [2] (crystals grown in [7] also had the same habitus $28 \times 8 \times 1 \text{ mm}^3$), however, later we could grow more bulky crystals with dimensions $20 \times 10 \times 4 \text{ mm}^3$ [3] and $33 \times 10 \times 5 \text{ mm}^3$ [4]. In Ref. [4] we could find crystallization conditions of L-arginine nitrate and have determined its crystal structure and composition 2(L-Arg·HNO₃)·H₂O (or L-Arg·HNO₃·0.5H₂O). The same IR spectra of crystalline and powdered samples testify that powdered sample is not anhydrous. Ramaswamy et al. [6] carried out detailed vibrational spectroscopic study of L-Arg·2HNO₃, however the spectra registered with nujol [2] and KBr pellet [6] are significantly different. It is necessary to reject an assumption that in Refs. [2] and [6] different polymorphs were obtained because of good accordance between unit cell parameters and structures of crystals obtained in [2] and [5,6]. Ramaswamy et al. [6] do not discuss distinctions between IR spectra of [2] and [6]. FTIR spectrum of L-Arg·2HNO₃ measured in Ref. [7] also does not coincide with spectrum of [6]. Seemingly the paper [6] was not known to authors of Ref. [7]. Vibrational spectra of L-Arg·2H₂O [8], various salts ofs L-arginine [9–17] as well as spectra of nitrates of other amino acids [18–20] have been published.

In present communication we report ATR FTIR and Raman spectra of L-Arg·HNO₃·0.5H₂O and L-Arg·2HNO₃ and a possible explanation of the above-stated discrepancy is proposed.

2. Experimental

As initial reagents we used L-arginine purchased from "Sigma" Chem. Co., and nitric acid of "chem. pure" grade. Crystals of L-Arg·HNO₃ $\cdot 0.5H_2O$ and L-Arg·2HNO₃ were obtained from aqueous solution as it were described in Ref. [4].

Attenuated total reflection Fourier transform infrared (FT-IR ATR) spectra were registered using Nicolet

^{*} Corresponding author. Tel.: +37410 285139; fax: +37410 282267. *E-mail address:* apetros@msrc.am (A.M. Petrosyan).

^{0022-2860/\$ -} see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2007.03.032

"Nexus" FT-IR spectrometer with ZnSe prism (4000- 650 cm^{-1} , Happ–Genzel apodization, single reflection accessory, ATR distortion is corrected, number of scans: 16, resolution: 4 cm^{-1}). Fourier transform Raman spectra were registered using NXP FT-Raman Module of Nicolet 5700 spectrometer (Nd:YVO₄ laser with 976 nm wavelength, Happ–Genzel apodization, resolution: 4 cm^{-1}). Power at the sample in case of L-Arg·H-NO₃·0.5H₂O was 0.48 W, number of scans: 256, while in case of L-Arg·2HNO₃ was 0.05 W, number of scans: 1024. Nicolet 5700 spectrometer also was used for registration of FTIR spectra with nujol in the region $650-400 \text{ cm}^{-1}$ and with KBr pellet (resolution: 2 cm^{-1} , number of scans: 32).

3. Results and discussion

3.1. Vibrational spectra of 2(L-Arg·HNO₃)·H₂O (L-Arg·HNO₃·0.5H₂O)

Unit cell contains two L-Arg⁺ cations, two NO₃⁻ anions and one water molecule. Singly charged cation of L-arginine +[(H₂N)₂CNH](CH₂)₃CH(NH₃⁺)COO⁻ is characterized by protonated $[(H_2N)_2CNH]^+$ guanidyl group, protonated alpha-amino group NH3+ and deprotonated carboxylate group COO⁻ [4]. IR and Raman spectra of L-Arg·HNO₃·0.5H₂O are shown in Fig. 1, values of wavenumbers are collected in Table 1. Structural data [4] and comparison of IR and Raman spectra allow assigning the characteristic vibrations. High-frequency region contains bands caused by stretching v(C-H) vibrations of CH and CH_2 groups, v(N-H) vibrations of NH, NH_2 and NH_3^+ groups and also stretching v(O–H) vibrations of water molecule. Characteristic band with peaks at 2879, 2897, 2931 and 2987 cm⁻¹ in the Raman spectrum we assign to v(C-H) vibrations. Respective peaks in the same region can be seen in the IR spectrum. More high-frequency peaks at $3000 \div 3407 \text{ cm}^{-1}$ in the IR and Raman spectra we assign to v(N-H) and v(O-H) vibrations. Wavenumbers of these peaks well correspond to position expected on the basis of structural data [4]. Shoulder at 3404 cm^{-1} in the IR spectrum may be assigned to $v(H_2O)$ because it disappeared at dehydration [4]. Singly charged L-arginine cation (L-Arg⁺) in the IR spectrum has characteristic absorption bands below 1700 cm⁻¹ caused by $v_{as}(COO^{-})$ and also by deformation vibrations of NH_2 and NH_3^+ groups. Absorption caused by deformation vibration of water molecule also is expected in this region. According to Michael Falk [21] the total range values of $\delta(H_2O)$ for crystalline hydrates is $1582-1721 \text{ cm}^{-1}$, with a mean value 1636 cm^{-1} . The strong band at 1629 cm^{-1} does not disappear at dehydration, but significantly decreases. Therefore it is possible to consider that this band is responsible also for deformation vibration of water molecule. Deformation vibrations of CH₂ groups are shown as more intensive lines in the Raman spectrum. Therefore very strong absorption band at 1397 cm⁻¹ probably relates to symmetric stretching vibration of COO⁻ group. Nitrate ion NO₃⁻ is characterized by $v_{as}(NO_3^{-})$, $v_s(NO_3^{-})$, $\pi(NO_3^{-})$ and $\delta_{as}(NO_3^{-})$. It is known that asymmetric $v_{as}(NO_3^{-})$ vibration is shown as very strong absorption band in IR spectrum, while symmetric $v_s(NO_3^{-})$ vibration as very intensive line in Raman spectrum. Very strong absorption band at 1328 cm^{-1} in the IR spectrum we assign to $v_{as}(NO_3^{-})$. Respective peak in the Raman spectrum we find at 1331 cm^{-1} . The most intensive line in the Raman spectrum at 1048 cm^{-1} relates undoubtedly to $v_s(NO_3^{-})$. Respective narrow band in the IR spectrum we find at 1043 cm⁻¹. Symmetric stretching vibration of ideal NO₃⁻ is inactive in IR absorption spectrum. Weaker, also narrow band at 824 cm^{-1} , we assign to out-of-plane deformation $\pi(NO_3^{-})$. This mode is Raman inactive for ideal NO₃⁻. Absorption in the region $500 \div 600 \text{ cm}^{-1}$ may contain also bands caused by deformation vibration of COO⁻ group and also librational vibrations of water molecule.

3.2. Vibrational spectra of L-Arg-2HNO₃

Asymmetric part of unit cell contains doubly charged $L-Arg^{2+}$ cation and two NO₃⁻ anions [4]. Doubly charged $L-Arg^{2+}$ cation is formed by additional protonation of group $+[(H_2N)_2CNH](CH_2)_3CH(NH_3^+)$ carboxylate COOH. This results in significant variations in hydrogen bonding scheme in comparison with L-Arg⁺, which is reflected in vibrational spectra. IR and Raman spectra of L-Arg·2HNO₃ are shown in Fig. 2, values of wavenumbers are collected in Table 1. Characteristic band in the Raman spectrum with peaks at 2927, 2957 and 2976 cm⁻¹ we assign to stretching v(C-H) vibrations of CH and CH₂ groups, while more high-frequency bands to stretching v(N-H) vibrations of NH, NH₂ and NH₃⁺ groups. Hydroxyl group forms hydrogen bond with intermediate strength with oxygen atom of one nitrate ion. Stretching v(OH) vibration is expected near 3000 cm^{-1} on the basis of structural data [4]. Therefore we think that broad band in the IR spectrum with peaks in the region $2833 \div 3003 \text{ cm}^{-1}$ is overlapping of v(OH) and v(C-H) vibrations, while peaks in the region $3071 \div 3454 \text{ cm}^{-1}$ are caused by v(N-H)vibrations of NH, NH₂ and NH₃⁺ groups. Two hydrogen bonds formed by NH3+ group are rather strong, while hydrogen bonds formed by guanidyl group are very weak [4]. The presence of strong absorption band at 1739 cm^{-1} is an indication of existence of neutral carboxyl group and hence L-Arg²⁺ cation. Strong peaks in the IR spectrum at 1684, 1655 and 1637 cm^{-1} we assign to deformation $\delta_{as}(NH_3^+)$ and $\delta(NH_2)$ vibrations, while band at 1531 cm⁻¹ to $\delta_s(NH_3^+)$. Respective peaks in the Raman spectrum are comparatively weak. Peaks at 1456 and 1439 cm⁻¹ in the Raman spectrum and respective absorption bands in the IR spectrum we assign to deformation vibrations of CH₂ groups. Very strong absorption band with peak at 1317 cm^{-1} we assign to asymmetric stretching vibration of NO₃⁻ anions. In the Raman spectrum in this region we find a line at 1334 cm^{-1} . The most intensive split

A.M. Petrosyan, R.P. Sukiasyan | Journal of Molecular Structure 874 (2008) 51-56

Fig. 1. ATR FTIR and FT Raman spectra of L-Arg·HNO₃·0.5H₂O (spectrum in the region 650 ÷ 400 cm⁻¹ was registered with nujol).

line in the Raman spectrum with peaks at 1044 and 1056 cm⁻¹ apparently relates to symmetric stretching vibration of nitrate ions. Corresponding bands in the IR spectrum we find as a narrow band at 1039 cm⁻¹ and a shoulder at 1052 cm⁻¹. Two nitrate ions in the structure of L-Arg·2HNO₃ form significantly different hydrogen bonds [4]. We consider that this can be the reason of splitting. Characteristic narrow $\pi(NO_3^{-})$ band in the IR spectrum we find at 822 cm⁻¹. Weak peaks at 727 cm⁻¹ and 710 cm⁻¹ probably relate to $\delta_{as}(NO_3^{-})$. However, CH₂ groups also have absorption in this region (rocking at 720 cm⁻¹). FTIR spectrum of L-Arg·2HNO₃ registered

(probably with KBr pellet) in Ref. [7] is in good accordance with ATR FTIR spectrum shown in Fig. 2. However, wavenumbers 1112.1 cm⁻¹ and 1039.3 cm⁻¹ in the spectrum [7] are not indicated in proper places. Peak indicated as 1112.1 cm⁻¹ corresponds to peak at 1248 cm⁻¹ in our spectrum, while peak indicated as 1039.3 cm⁻¹ corresponds to peak at 1111 cm⁻¹ in our spectrum. In addition, authors of Ref. [7] assigned to NO₃⁻ vibrations peaks at 1320.3, 1112.1 and 822.3 cm⁻¹. As it is clear from the above-stated, we do not agree with assignment of the band at 1112.1 cm⁻¹to vibration of NO₃⁻ ion. We mentioned above that IR spectrum shown in Ref. [6] significantly dif-

A.M. Petrosyan, R.P. Sukiasyan | Journal of Molecular Structure 874 (2008) 51-56

Table 1		
Wavenumbers (cm ⁻¹)	of absorption peaks and Raman lines of L-Arg·HNO ₃ ·0.5H ₂ O and L-Arg·2HN	O ₃

L-Arg·HNO ₃ ·0.5H ₂ O		Assignment	L-Arg·2HNO ₃		Assignment	
IR	Raman		IR	Raman	-	
3404sh	3407sh	$\nu(OH)$ H ₂ O	3454	3457	v(NH)	
3324	3363:3321	v(NH)	3373sh	3360	NH. NH ₂ . NH ₂ ⁺	
3297sh	3297	NH.	3352sh:3326	3252:3230		
3261sh	3288:3217	NH ₂ .	3268:3221	3171		
3168	3183:3172	NH_{+}^{2}	3171			
3063	3093:3057	3	3157:3151			
	3037		3071			
			3003			
2992sh	2987	v(CH)	2982		v(CH)	
2960	2944:2931	CH. CH ₂	2951	2976	CH.	
2943	2897	- , - 2	2924	2957	CH ₂	
2887	2879		2904	2927	v(OH)	
2843sh	2077		2880	2897sh	COOH	
2010011			2833	2890sh	00011	
			2000	2862sh		
2743sh	2768	Overtones	2784.2765	2772	Overtones	
2652	2700	Combinational	2702: 2644	2738	Combinational	
2573		comonational	2573	2700	comonium	
2428			2489			
2097			2055			
2007			1739	1736	v(C=O)COOH	
1674	1672	v (COO ⁻)	1757	1750	((e=0)00011	
1662sh	1663	$\delta_{\rm res}(\rm NH_{*}^{+})$	1684	1677	$\delta_{\rm res}({\rm NH_{*}^{+}})$	
1002311	1651.1641	$\delta(\mathbf{NH}_2)$	1655	1650	$\delta(NH_2)$	
1629	1630	$\delta(H_2)$	1635 1637:1621sh	1631sh	0(1112)	
1585	1591.1584	0(1120)	1586sh	1580		
1505	1575	$\delta(\mathbf{NH}_{2})$	150031	1500		
1517	1530	δ (NH, +)	1531		δ (NH, +)	
1473	1477	$\delta(CH_2)$	1467		$\delta(CH_{a})$	
1453	1455	0(0112)	1457	1456	0(0112)	
1441sh	1443		1433	1430		
1423sh	1429		1420	1457		
1307	1409	v (COO ⁻)				
1361	1388	$\psi_{s}(CH_{2})$	1400	1389	$\omega(CH_{a})$	
1351sh	1343	$\tau(CH_2)$	1385	1361	$\tau(CH_2)$	
1328	1331	$v_{\rm e}(NO^{-})$	1317	1334	$v_{\rm v}$ (NO, $^-$)	
1312sh-1265	1313-1296	vas(1103)	1294	1554	$v_{as}(1003)$	
1512311,1205	1515,1290		1234	1259	v(C-OH)	
1208	1211		1225	1209		
1165·1157sh	1162	$\rho(\mathrm{NH}^{+})$	1172	1173	$o(\mathbf{NH}^+)$	
1128.1111	1132	$\rho(\mathbf{NH}_3)$	1112	1116sh	$\rho(\mathbf{NH}_3)$	
1084sh	1095.1090	$v(\mathbf{C}-\mathbf{N})$	1082	1085	$v(\mathbf{C}-\mathbf{N})$	
1043	1048	$v(\mathbf{C},\mathbf{N}\mathbf{O})^{-}$	1052sh:1039	1056.1044	$v(\mathbf{N}\mathbf{O}^{-})$	
1020	1020	V§(1103)	105251,1055	1050,1044	Vs(1003)	
986	985					
966	969		955	959	$\gamma(\mathbf{OH})$	
943	946		918	918	COOH	
902	906		891	510	coon	
868-850	869.853		858	866		
824	007,055	$\pi(NO^{-})$	822	830	$\pi(NO^{-})$	
802.788	805	$n(100_3)$	022	050	$n(100_3)$	
750	753		758.741	761.745sh		
100	725		730,741	731	$o(\mathbf{CH}_{\mathbf{a}})$	
709.694	713	δ (NO ⁻)	710	714	$\delta (NO^{-})$	
662	608	$\delta(COO^{-})$	657.584	657-676	$v_{as}(1,0_3)$	
558.545	565.544	$v_{\rm r}({\rm H_2O})$	540	037,020		
500,5 1 5 577	528	vL(112O)	534.517	535		
707	J20 108		171	555		
443	490 447·402		426	429.404		
U	386.200		720	729,704		
	300,200			555,511		

v- stretching, δ -deformation scissoring, ω -wagging, τ -twisting, π - out-of-plane deformation, ρ -rocking, γ - out-of-plane bending, v_L - librational, s-symmetric, as-asymmetric, sh-shoulder.

A.M. Petrosyan, R.P. Sukiasyan | Journal of Molecular Structure 874 (2008) 51-56

Fig. 2. ATR FTIR and FT Raman spectra of L-Arg-2HNO₃(spectrum in the region $650 \div 400 \text{ cm}^{-1}$ was registered with nujol).

fers from the spectrum registered in nujol [2], while ATR FTIR spectrum (Fig. 2) is in good accordance with spectrum in nujol. We consider that probable reason for this discrepancy is decomposition and ionic exchange during preparation of KBr pellet. Moreover, authors [6] emphasize that the "mixture was then pressed under vacuum at very high pressure". The possibility of such distortion was demonstrated recently one more time in Ref. [22]. We tried to reproduce the spectrum of [6] by preparing

KBr pellet under high pressure. However, registered spectrum differs from both spectra in Fig. 2 and that shown in [6], which at least indicates that by applying high pressure during preparation of KBr pellet, IR spectrum of L-Arg·2HNO₃ can be significantly distorted. In addition, symmetric stretching vibration of NO₃⁻ ions in the Raman spectrum appears as single line at 1046 cm⁻¹(see Fig. 3 and Table 2 in [6]) instead of split line with peaks at 1044 cm⁻¹ and 1056 cm⁻¹ (Fig. 2).

56

4. Conclusion

Two crystals from the system L-arginine + HNO₃ + H₂O, namely, 2(L-Arg·HNO₃).H₂O (or L-Arg·HNO₃: 0.5H₂O) and L-Arg·2HNO₃ are studied by vibrational spectroscopy. Discrepancy of the spectrum of L-Arg·2HNO₃ with earlier published one can be caused by partial ionic exchange and decomposition of the sample at preparation of KBr pellet under high pressure.

Acknowledgement

Authors thank Dr. G.G. Martirosyan for his kind assistance in registration of the spectra and reviewer for useful comment.

References

- S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eimerl, A. Zalkin, J. Crystal Growth 85 (1987) 252.
- [2] A.M. Petrosyan, R.P. Sukiasyan, H.A. Karapetyan, S.S. Terzyan, R.S. Feigelson, J. Crystal Growth 213 (2000) 103.
- [3] A.M. Petrosyan, R.S. Feigelson, E.W. Van Stryland, R.P. Sukiasyan, H.A. Karapetyan, Proc. SPIE 4751 (2002) 217.
- [4] S.S. Terzyan, H.A. Karapetyan, R.P. Sukiasyan, A.M. Petrosyan, J. Mol. Struct. 687 (2004) 111.

- [5] S. Ramaswamy, B. Sridhar, V. Ramakrishnan, R.K. Rajaram, Acta Crystallogr. E57 (2001) 0872.
- [6] S. Ramaswamy, R.K. Rajaram, V. Ramakrishnan, J. Raman Spectrosc. 34 (2003) 50.
- [7] Preema C. Thomas, Jolly Thomas, J. Packiam Julius, J. Madhavan, S. Selvakumar, P. Sagayaraj, J. Crystal Growth 277 (2005) 303.
- [8] T. Mallik, T. Kar, J. Crystal Growth 285 (2005) 178.
- [9] G. Dhanaraj, M.R. Srinivasan, H.L. Bhat, J. Raman Spectrosc. 22 (1991) 177.
- [10] S. Mukerji, T. Kar, Materials Chem. Phys. 57 (1998) 72.
- [11] R.J.C. Lima, P.T.C. Freire, J.M. Sasaki, F.E.A. Melo, J. Mendes Filho, J. Raman Spectrosc. 33 (2002) 625.
- [12] T. Pal, T. Kar, J. Crystal Growth 234 (2002) 267.
- [13] D. Xu, X.Q. Wang, W.T. Yu, S.X. Xu, G.H. Zhang, J. Crystal Growth 253 (2003) 481.
- [14] K. Meera, R. Muralidharan, R. Dhanasekaran, Prapun Manyum, P. Ramasamy, J. Crystal Growth 263 (2004) 510.
- [15] Preema C. Thomas, Lanka Bhushan Kumar, A. Anuradha, Ginson P. Joseph, P. Sagayaraj, J. Crystal Growth 290 (2006) 560.
- [16] A.M. Petrosyan, Vib. Spectr. 41 (2006) 97.
- [17] S. Haussühl, H.A. Karapetyan, R.P. Sukiasyan, A.M. Petrosyan, Cryst. Growth Design 6 (2006) 2041.
- [18] J. Baran, A.J. Barnes, H. Ratajczak, Spectrochim. Acta 51A (1995) 197.
- [19] Beulah J.M. Rajkumar, V. Ramakrishnan, J. Raman Spectrosc. 31 (2000) 1107.
- [20] H.A. Petrosyan, H.A. Karapetyan, A.M. Petrosyan, J. Mol. Struct. 794 (2006) 160.
- [21] M. Falk, Spectrochim. Acta 40 A (1984) 43.
- [22] A.M. Petrosyan, Vib. Spectr. 43 (2007) 284.