
A study of thermal and dielectric behavior of melaminium
perchlorate monohydrate single crystals

N. Kanagathara • M. K. Marchewka •

N. Sivakumar • K. Gayathri • N. G. Renganathan •

S. Gunasekaran • G. Anbalagan

Received: 26 June 2012 / Accepted: 17 September 2012 / Published online: 9 October 2012
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Abstract Single crystals of melaminium perchlorate

monohydrate (MPM) have been grown from aqueous solu-

tion by slow solvent evaporation method at room tempera-

ture. X-ray powder diffraction analysis confirms the title

crystal crystallizes in the triclinic (P-1) structure and the

calculated lattice parameters are a = 5.6275 ± 0.0780 Å,

b = 7.6926 ± 0.1025 Å, c = 12.0878 ± 0.2756 Å, a =

103.89 ± 1.01�, b = 94.61 ± 0.92�, c = 110.22 ± 0.81�,

and V = 468.95 Å3. The thermal decomposition behavior of

MPM has been studied by means of thermogravimetric

analysis at three different heating rates 5, 10, and

20 �C min-1. The values of effective activation energy (Ea),

pre-exponential factor (ln A) of each stage of thermal

decomposition for all heating rates were calculated by model

free method: Kissinger, Kim–Park, and Flynn–Wall method.

A significant variation of effective activation energy (Ea)

with conversion (a) indicates that the process is kinetically

complex. The linear relationship between the A and Ea values

was established (compensation effect). Dielectric study has

also been carried out and it is found that both dielectric

constant (e0) and dielectric loss (e00) decreases with increase

in frequency.
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Introduction

Melamine (2,4,6-triamino-1,3,5-triazine) is an industrial

chemical mainly used in the production of melamine

formaldehyde resins for surface coatings, laminates, and

adhesives and in the production of flame retardants resins

to improve the flame resistance [1]. The use of melamine

resin in automobile paints was examined by Zieba–Palus

[2]. Melamine and its salts are widely used in the formu-

lation of fire retardant additive systems for polymeric

materials [3, 4]. Melamine readily forms insoluble adducts

with many organic and inorganic acids [5, 6]. Perchloric

acid forms interesting complexes with organic cations.

Both melamine and perchloric acid have got several

industrial applications. Melamine molecule could be used

as an organic part of investigated crystals. This molecule

and its polymer found application in a wide variety of

technological fields. Various studies on the adduct of

melamine with urea, formaldehyde, and boric acid have

been reported. [7, 8] The crystal structure of melaminium

perchlorate monohydrate (MPM) was already reported by

Zhao and Shi [9]. The title crystal is composed of mela-

minium cations, C3H7N6
?, perchlorate anions ClO4

-, and

water molecules. Several researchers have already studied
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the thermal behavior of melamine [10–12]. Phase trans-

formation of melamine at high pressure and temperature

was studied by Yu et al. [13]. Nagaishi et al. [14] studied

the thermal decomposition of the addition compound of

melamine with hydrogen peroxide. Thermal and flame

retardation properties of melamine phosphate-modified

epoxy resins were studied by Chen et al. [15]. The presence

of triazine ring in their structure gives improved hydrolytic

and thermal stability [16]. TG is used to determine the

thermal decomposition kinetics and thermal stability of

polymers. This can be done by either single heating rate

program like Coats–Redfern, Freeman–Caroll, Chang, or

multiple heating rate programs like Friedmann, Flynn–

Wall, Kissinger, and Kim–Park [17]. According to ICTAC

kinetics committee, multiple heating rate programs is rec-

ommended. Since this method results only fewer errors

than single heating rate method, to estimate kinetic

parameters for the thermal decomposition of polymer

composites, multiple heating rate method is applied.

Although many reports available for the thermal behavior

of melamine and its salts, not much research has been

carried out on the kinetic analysis of the thermal decom-

position of MPM. Hence, in this study, we report the

growth of MPM single crystal. The grown crystal is char-

acterized by using XRD, thermal stability has been done by

thermogravimetric analysis. Thermal behavior of kinetics

has been carried out and the results are discussed in detail

in this communication. Dielectric studies have also been

done to characterize dielectric behavior of the title crystal.

Materials and methods

Single crystals of MPM (C3H7N6
?ClO4

-�H2O) were grown

by slow evaporation method. This growth was accom-

plished by mixing AR grade samples of melamine and

perchloric acid in an appropriate ratio and stirred well,

filtered and then allowed to cool. Tiny transparent and

colorless crystals of the title compound were obtained after

3–4 weeks duration.

The grown crystals have been characterized by X-ray

powder diffraction technique using Rich Seifert X-ray pow-

der diffractometer with Cu Ka radiation of k = 1.5406 Å in

the 2h range of 10�–70� by employing the reflection mode for

scanning. The detector used was a scintillation counter. The

sample was scanned at a rate of 1� min-1. The thermal

behavior of MPM was studied at 5, 10, and 20 �C min-1 by

using a SDT Q 6000 V 8.2 Built 100 thermal analyzer. All

the experiments were non-isothermal and were carried out

under nitrogen atmosphere in the temperature range of

30–1,000 �C. Also the title crystal was subjected to dielectric

studies using a HIOKI model 3532-50 LCR HITESTER with

a conventional two terminal sample holder. The sample was

electroded on either side with air-dying silver paste so that it

behaves like parallel capacitor. The studies were carried out

in the frequency range of 50 Hz–5 MHz and within the

temperature ranging from 313 to 373 K.

Results and discussion

X-ray powder diffraction analysis

Figure 1 shows the indexed X-ray powder diffraction pat-

tern for the grown title crystal. From the study, it is con-

firmed that the title crystal crystallizes in triclinic system

(P-1) with the lattice parameters a = 5.6275 ± 0.0780 Å,

b = 7.6926 ± 0.1025 Å, c = 12.0878 ± 0.2756 Å, a =

103.89 ± 1.01�, b = 94.61 ± 0.92�, c = 110.22 ± 0.81�,

and V = 468.95 Å3 and these values agree very well with

the earlier literature [9]. The prominent peaks have been

indexed. The sharp and well-defined Bragg’s peaks at

specific 2h angles confirm the crystalline nature and purity

of the title crystal.

Thermal studies

Thermogravimetric analysis is a powerful tool to charac-

terize the variety of products in industry [18, 19]. TG–DTA

curves of MPM at three different heating rates 5, 10, and

20 �C min-1 in the temperature range of 30–1,000 �C are

shown in Fig. 2. It is seen from Fig. 2 that the decompo-

sition of MPM occurs in three stages involving dehydration

and decomposition. In the first stage, which takes place

below ±120 �C suggesting that hydrated water of MPM is

eliminated from the structure of the title compound and the

corresponding exothermic DTA peak is obtained at
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Fig. 1 Powder X-ray diffraction pattern of MPM
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±110 �C. A rapid mass loss of nearly ±57 % occurs dur-

ing the second stage which is due to the elimination of

melaminium cations. This stage is attributed by three

exothermic peaks which may be due to the decomposition

of melamine. Generally, the thermal decomposition of

melamine proceeds in stages and is accompanied by the

detachment of ammonia. Melamine first decomposes into

melam and then melon. The NH2 groups in melam can be

replaced by other atoms and groups [20]. Melaminium

picrate [21] decomposes at 268 �C without any melting.

But in the present case, melting occurs before decompo-

sition. This is clearly seen in DTA curves (Fig. 2), i.e, a

small hump appears before decomposition of melaminium

cations. The remaining mass loss is accompanied by

elimination of perchlorate anions in the third stage.

The TG curves shifted to higher temperatures as the

heating rate is increased which is depicted in Fig. 2. This

shows that definite heating rate has influence on the ther-

mal decomposition [22].

TG kinetics method of thermal degradation

Large number of mathematical models has been proposed

and used for studying kinetics and mechanism of such

reactions using the TG data. Multiple heating rate data

have been recommended for non-isothermal studies

[23, 24]. Here, we studied the kinetics of the thermal

decomposition of MPM at three different heating rates by

three different multiple heating methods: Flynn–Wall,

Kissinger, and Kim–Park [25–27].

The rate of degradation da
dt

can be expressed as the

product of the function of temperature and the function of

conversion: Typical graphs depicting fraction reacted, a
versus temperature for three stages are shown in Fig. 3.

Flynn–Wall plots for three different heating rates against

the temperature for the stages I, II, and III are shown in

Figs. 4, 5, and 6, respectively, and the straight lines

obtained are nearly to parallel to each other. At each

heating rate, the temperatures were determined corre-

sponding to extents of overall conversion 0.05–0.65 in

intervals of 0.05. Activation energy (Ea) is calculated from

the slope of the plot ln b versus 1/T for a fixed mass loss

and it is given in Table 1. Activation energies calculated

from the Kissinger and Kim–Park method are given in

Table 2. The activation energy obtained for the three stages

were found to be comparable with the result of Kissinger

and Kim–Park method.

Figure 7a shows the relationship between the conver-

sion (a) and effective activation energy (Ea). Effective
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activation energy can vary strongly with the temperature

and the extent of conversion [28, 29]. If effective activation

energy (Ea) is roughly constant over the entire conversion

range, then it is said to be dominated by a single-step

mechanism. In the present case, a significant variation in

effective activation energy (Ea) with conversion (a) indi-

cates that the process is kinetically complex, i.e., multi-step

reaction mechanism [30]. Ea decreases with the extent of

conversion (a) for the stages I and II except at a = 0.65 for

the stage II which is due to the exothermic decomposition

of MPM. Effective activation energy is found to be very

high for the stage III which indicates the significant vari-

ation with conversion. Dependence of effective activation

energy (Ea) with extent of conversion (a) is used to identify

its kinetic scheme, i.e., these values are used for input to

multi-step for model fitting purposes [31]. Kinetic com-

pensation effect was observed in many isothermal pro-

cesses. The value of Ea bears a linear relationship with ln A

viz

ln A ¼ aE þ b; ð1Þ

where a and b are called compensation parameters. The

compensation effect is valid for the thermal decomposition

of MPM and it is shown in Fig. 7b.

Several researchers [31–35] reported the kinetic analysis

by model fitting methods and dissociation mechanisms.

Analysis of kinetics using different mechanisms based on

kinetic models involve the selection of a ‘‘best fit’’ model

which in turn depends on the value of statistical parameter

r. In this study, the results are discussed only for the model

which correlation is nearly 0.9–0.99.

A plot of ln g(a)/T2 versus 1,000/T shown in Fig. 8 for

the stages I, II, and III almost give a straight line. For all

the three stages, Avrami–Erofe’ev model is accepted [36].

The g(a) function can take the value of -ln(1 - a)1/2.

Straight line with high correlation coefficient and low

standard deviation values are selected to represent the

possible controlling mechanism.

Dielectric studies

The dielectric properties are associated with the electro-

optic property of materials; particularly, when they are non

conducting materials [37]. The dielectric constant and

dielectric loss are calculated using the equation er = Cd/

eoA, where A is the area of the sample and d is the thick-

ness of the sample. The relative permittivity (er) is usually

known as permittivity. Figure 9 shows the temperature

dependence of dielectric constant (er) and dielectric loss

(tan d) for four different temperatures as a function of log

frequency.

At low frequencies, all the four contributions may be

active [38]. The high value of dielectric constant is

attributed to high ionic conductivity. Most of the solid

electrolytes have high dielectric constant. It is also

observed that as the temperature increases, the value of

dielectric constant also increases to a considerable value.

The exchange of the charge carriers in the lattice sites is

thermally activated by an increase in the temperature [39]

resulting increase in dielectric constant. As the frequency

increases, both the dielectric constant and dielectric loss

values are found to decrease exponentially and attain

constant values. The dielectric plot of the sample confirms

the slight shift occurring with increase in frequency, which

may be attributed to the excitation of electrons in the MPM

single crystal lattice [40]. It is observed that the dielectric
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loss decreases slowly with temperature for all frequencies

and attains the steady value at high temperature. The

increase in tan d with temperature may be due to space

charge polarization. The larger value of er and tan d at low

frequency arises due to the presence of space charge

polarization near the grain boundary interfaces which

depends on the purity and perfection of the sample. At low

frequencies, the dipoles can easily switch alignment with

the changing field. As the frequency increases, the dipoles

are less able to rotate and maintain phase with the applied

field, thus they reduce their contribution to the polarization.

The low dielectric loss at higher frequency of the sample

indicates that title crystals posses lesser number of elec-

trically active defects [38], and this parameter is of vital

Table 1 Kinetic parameters of non-isothermal decomposition of MPM by Flynn–Wall method

a Flynn–Wall

Stage I Stage II Stage III

Ea/kJ mol-1 ln A/s-1 Ea/kJ mol-1 ln A/s-1 Ea/kJ mol-1 ln A/s-1

0.05 143.22 46.60 116.41 22.78 146.27 19.65

0.1 129.17 41.79 109.09 21.31 147.89 19.75

0.15 116.44 37.55 104.09 20.29 147.37 19.59

0.2 107.71 34.64 98.29 21.44 144.02 19.05

0.25 102.38 32.85 92.98 18.09 144.67 19.03

0.3 98.59 31.56 89.03 17.31 144.67 18.95

0.35 95.07 30.39 86.29 16.75 142.99 18.64

0.4 93.16 29.72 82.79 16.07 144.23 18.72

0.45 91.34 29.09 79.36 15.41 144.23 18.64

0.5 89.58 28.48 75.61 14.69 141.11 18.17

0.55 86.67 27.52 71.22 13.86 143.34 18.37

0.6 85.48 27.09 67.89 13.22 141.03 18.01

0.65 83.94 26.57 71.31 13.82 141.03 17.94

Table 2 Activation energies of thermal degradation of MPM by Kissinger and Kim–Park method

Method Stage I Stage II Stage III

Ea/kJ mol-1 ln A/s-1 Ea/kJ mol-1 ln A/s-1 Ea/kJ mol-1 ln A/s-1

Kissinger 71.62 12.21 117.34 12.47 159.87 9.61

Kim–Park 77.94 27.09 127.59 27.32 175.24 25.26
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importance for nonlinear optical materials in their

application.

The variation in resistivity and conductivity with the

frequency for the title crystal is shown in Fig. 10. The AC

resistivity and AC conductivity were calculated using the

relation

q ¼ A=2pfCd and rq ¼ 1=q; ð2Þ

where C is the capacitance, d is the thickness, A is the area

of the crystal, and f is the frequency of the applied field.

It is observed that the AC resistivity decreased rapidly as

frequency increased. Obviously reverse trend was observed

for AC conductivity of the grown crystals which is con-

sidered to be a normal dielectric behavior. Hence, con-

ductivity increases with increases in temperature is due to

the temperature dependence of the proton transport [41].

Conclusions

Single crystals of MPM have been grown by slow evapora-

tion method. The grown crystals have been characterized by

X-ray powder diffraction and it is found that it crystallizes in

the space group P-1 with triclinic geometry. TG–DTA

measurements were carried out at three different heating

rates 5, 10, and 20 �C min-1. Multiple heating rate methods:

Flynn–Wall, Kissinger, and Kim–Park were used. The

effective activation energies obtained by these methods are

comparable. The plot of 1/Tp versus ln (b/Tp
2) for the stages

showed a reasonable straight line with high correlation co-

efficiency. It is found that the activation energy obtained

from Kim–Park method was higher than those from other

methods. Dependence of effective activation energy with

extent of conversion shows that the process is kinetically

complex. The compensation effect is valid for thermal

decomposition of MPM. From the dielectric study, it can be

concluded that both dielectric constant and dielectric loss of

the crystal decreases with increase in frequency attaining a

constant value beyond 100 kHz. The low value of dielectric

loss at high frequency suggests that the grown crystals pos-

sess good optical quality. This parameter is of vital impor-

tance for nonlinear optical materials in their applications.
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