Optimizing the oxygen balance by changing the A-site cations in molecular perovskite high-energetic materials†

Shao-Li Chen, ‡ Yu Shang, ‡ Chun-Ting He, ‡ Lin-Ying Sun, ‡ Zi-Ming Ye, Wei-Xiong Zhang ‡* and Xiao-Ming Chen ‡*

We presented two new members of molecular perovskite high-energetic materials, (H$_2$pz)[Na(ClO$_4$)$_3$] (PAP-1) and (H$_2$dabco-O)[K(ClO$_4$)$_3$] (DAP-O2), in which H$_2$pz$^{2+}$ (piperazine-1,4-diium) and H$_2$dabco-O$^{2-}$ (1-hydroxy-1,4-diazabicyclo[2.2.2]octane-1,4-diium) act as A-site fuel cations, respectively. Compared with their H$_2$dabco$^{2+}$ analogues, (H$_2$dabco)[M(ClO$_4$)$_3$] (M = Na$^+$ for DAP-1 and K$^+$ for DAP-2, respectively), PAP-1 and DAP-O2 exhibit optimized oxygen balance by employing two strategies to change the A-site cations, i.e., “trimming the C and H atoms” of H$_2$dabco$^{2+}$ by using H$_2$pz$^{2+}$ to form PAP-1 and adding an O atom into H$_2$dabco$^{2+}$ to form DAP-O2, respectively. As suggested by DFT calculations and the K−J equation, the smaller H$_2$pz$^{2+}$ cation in PAP-1 gives a significantly-optimized oxygen balance from −22.0% to −3.9% and an increased crystal density from 2.02 to 2.07 g cm$^{-3}$, resulting in a better detonation performance for PAP-1. Meanwhile the larger H$_2$dabco-O$^{2-}$ cation gives a slightly-optimized oxygen balance from −21.3% to −17.1% but a decreased crystal density from 2.04 to 1.98 g cm$^{-3}$, leading to a decreased detonation performance from DAP-2 to DAP-O2. This study demonstrated how to rationally choose the A-site cations in a perovskite structure for modulating the properties of molecular perovskite high-energetic materials, providing important clues for designing more advanced energetic materials for practical use.

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
E-mail: zhangwx6@mail.sysu.edu.cn, cxm@mail.sysu.edu.cn
† Electronic supplementary information (ESI) available. CCDC 1860906, 1872452 and 1872410. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8ce01350k
‡ These authors contributed equally to this work.

Introduction

Since black powder was invented by ancient Chinese, energetic materials, as one of the most influential materials in human history, have been widely investigated.1–3 Promoted by the joint efforts of synthetic and theoretical investigations, the past few decades have witnessed a rapid development of high-energetic materials,4 especially nitrogen-rich organic energetic molecules,5–17 as well as their ionic salts,18–23 coordination polymers24–30 and metal-organic frameworks.31–40 However, for most single explosives, the increase in detonation performance generally causes instability, sensitivity and high cost. Such a contradiction between the detonation performance, stability, and cost results in a frustrating fact that the currently best practicable single explosive is still HMX (cyclotetramethylene tetranitramine), invented during the Second World War, despite its average performance and high cost.4 Therefore, seeking an ideal balance between the detonation performance, stability, and cost is a long-term challenge for the evolution of practicable single explosives.

To design energetic compounds via simple synthetic routes, with low production costs and easy scale-up, we proposed a new strategy that assembles the low-cost molecular oxidizer and fuel components into ternary crystals with a specified structure. Different from the traditional design focusing on the modification of intra-molecular functional groups, our strategy emphasises the inter-molecular self-assembly that could be easily achieved in solution under ambient conditions by judiciously choosing the molecular components. Compared with the early-explored simple energetic binary salts, ternary crystals provide much room for material design as well as performance modulation.41,42 As the simplest high-symmetry structure for ternary crystals, the perovskite structure is very attractive, and perovskite materials always stand at the forefront of materials science.43–50 In our previous work,51–53 we employed the perovskite structure to incorporate oxidative ClO$_4^-$ anions and reductive H$_2$dabco$^{2-}$ cations (1,4-diazbicyclo[2.2.2]octane-1,4-diium) into ternary crystals with the aid of different alkali/ammonium cations, and obtained four molecular perovskite high-energetic...
materials, \((\text{H}_2\text{dabco})[\text{M(ClO}_4)_3]\) (\(\text{M} = \text{Na}^+, \text{K}^+, \text{Rb}^+, \text{and NH}_4^+\)
for DAP-1, -2, -3, and -4, respectively). The previous study revealed that the alternately dense packing of oxidative \(\text{ClO}_4^-\)
anions and reductive organic cations in the perovskite structure gives rise to a new class of advanced single explosives possessing a detonation performance superior to HMX, a higher stability than HMX, and importantly, a much lower cost than HMX.

Moreover, by taking advantage of the tuneable/modifiable characteristics of the A, B and X components, such molecular perovskites provide an opportunity to tailor the performances of high-energetic materials. In principle, diverse molecular components with suitable valence, shape and size can be assembled into such kinds of ternary crystals to modulate the properties such as oxygen balance, crystal density, and stability as well as detonation performance. To investigate the capacity of molecular perovskites to optimize the oxygen balance by the A-site fuel cations, as a continued work, we herein presented two new members of molecular perovskite high-energetic materials, \((\text{H}_2\text{pz})[\text{Na(ClO}_4)_3]\) (PAP-1) and \((\text{H}_2\text{dabco}-\text{O})[\text{K(ClO}_4)_3]\) (DAP-O2), in which \(\text{H}_2\text{pz}^{2+}\) (piperazine-1,4-dium) and \(\text{H}_2\text{dabco}-\text{O}^{2+}\) (1-hydroxy-1,4-diazabicyclo[2.2.2]octane-1,4-dium) act as A-site fuel cations, respectively. As shown in Scheme 1, compared with the previously-used \(\text{H}_2\text{dabco}^{2+}\) cation, these two A-site fuel cations presented two strategies for optimizing oxygen balances, i.e., “trimming the C and H atoms” of \(\text{H}_2\text{dabco}^{2+}\) by using \(\text{H}_2\text{pz}^{2+}\) to generate PAP-1 and adding an O atom into \(\text{H}_2\text{dabco}^{2+}\) by using \(\text{H}_2\text{dabco}-\text{O}^{2+}\) to give DAP-O2, respectively. The influences on the detonation performances and stabilities of these two strategies are discussed, based on the combined techniques of single-crystal/powder X-ray diffraction and thermal analyses, as well as theoretical evaluations of the detonation parameters.

Experimental section

Materials and methods

All chemicals were obtained from commercial sources and used without further purification. DSC measurements were performed by heating and cooling the powder sample on a TA Q2000 instrument. The PXRD patterns (Cu-K\(\alpha\)) for identifying the phase purity were collected on a Bruker Advance D8 diffractometer using the Bragg-Brentano geometry. The enthalpy of formation was approximated by obtaining the constant volume combustion energies (\(\Delta_f U\)) using a big oxygen bomb calorimeter (No. 24391170) with a volume of about 5.0 L and a calorie limit of 203 kJ made by the Xi’an Modern Chemistry Research Institute (Xi’an, China). The detonation parameters were calculated using the EXPLO5 v6.04.02 computer code. The impact sensitivity was tested on a BFH 10 BAM impact apparatus. The friction sensitivity was tested on a FSKM 10 BAM friction apparatus.

Synthesis of \((\text{H}_2\text{pz})[\text{Na(ClO}_4)_3]\) (PAP-1)

Different from the previously-reported method that directly dissolves piperazine, NaClO\(_4\) and HClO\(_4\) with a molar ratio of 1 : 1 : 2 in distilled water,\(^{43}\) in this work, sodium perchlorate (1 mmol) was added into an aqueous solution (5 mL) of piperazine (1 mmol), then a 70% perchloric acid solution was added into the solution. The colourless products were obtained by filtration and washed three times with ethanol, in a yield of 80% based on NaClO\(_4\).

Synthesis of \((\text{H}_2\text{dabco}-\text{O})[\text{K(ClO}_4)_3]\) (DAP-O2)

Triethylenediamine (1 mmol) was dissolved in 30% hydrogen peroxide (molar ratio 1 : 3) and stirred at 0 °C for 5 min, then concentrated and filtered to gain dabco-O solid products. Potassium perchlorate (1 mmol) was added into an aqueous solution (20 mL) of dabco-O (1 mmol), then mixed with a 70% perchloric acid solution. The colourless products were also obtained by filtration and washed three times with ethanol, in a yield of 60% based on KClO\(_4\).

Caution: Although they were safe to use during the syntheses in the course of this research, these energetic materials need to be handled with extreme care. The mixtures of perchloric acid and organic liquids are highly sensitive, so do not mix them without the corresponding perchlorate salt.

X-ray crystallography

The colourless block single crystals of PAP-1 and DAP-O2 for X-ray diffraction were obtained by evaporating the filtrates after several days. The diffraction intensities of PAP-1 and DAP-O2 at 223 K were collected on a SuperNova AtlasS2 diffractometer with graphite-monochromated Mo-K\(\alpha\) radiation (\(\lambda = 0.71073\) Å). The diffraction intensities of PAP-1 and DAP-O2 at room temperature were collected on a Rigaku XtaLAB P300DS diffractometer with graphite-monochromated Cu-K\(\alpha\) radiation (\(\lambda = 1.54184\) Å) and Mo-K\(\alpha\) radiation (\(\lambda = 0.71073\) Å), respectively. The structures were solved with the SHELXLX structure solution program using direct methods and refined with the SHELX refinement package using a full-matrix least-squares technique. Anisotropic displacement parameters were applied to all non-hydrogen atoms except for the highly-disordered \(\text{H}_2\text{dabco}-\text{O}^{2+}\) cation. All the hydrogen atoms were generated geometrically. Crystallographic data are summarized in Table 1. The CIFs were deposited in the
Table 1 Thermal data from DSC measurements

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(T_d^a/°\text{C})</th>
<th>(T_p^b/°\text{C})</th>
<th>(Q_{\text{dsc}}^c/\text{kJ g}^{-1})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAP-1</td>
<td>344</td>
<td>361</td>
<td>4.40</td>
<td>52</td>
</tr>
<tr>
<td>PAP-1</td>
<td>371</td>
<td>375</td>
<td>4.69</td>
<td>This work</td>
</tr>
<tr>
<td>DAP-2</td>
<td>364</td>
<td>377</td>
<td>4.08</td>
<td>52</td>
</tr>
<tr>
<td>DAP-O2</td>
<td>329</td>
<td>360</td>
<td>4.53</td>
<td>This work</td>
</tr>
</tbody>
</table>

\(^a\) The onset decomposition temperatures. \(^b\) The peak decomposition temperatures. \(^c\) The heat of decomposition recorded by DSC.

Results and discussion

Single-crystal structures

Single-crystal X-ray crystallography showed that PAP-1 crystallizes in the monoclinic space group \(P2_1/c\) at both 293 K and 223 K, while DAP-O2 crystallizes in the cubic space group \(Fm\overline{3}c\) at 293 K and \(P2_1/c\) at 223 K. The structures of both PAP-1 and DAP-O2 are of perovskite type, by regarding \(\text{H}_2\text{pz}^{2+}\) or \(\text{H}_2\text{dabco}^{2+}\) as the A-site cation, \(\text{Na}^+\) or \(\text{K}^+\) as the B-site cation, and \(\text{ClO}_4^-\) as the X-bridges. That is, in PAP-1 (or DAP-O2), each \(\text{Na}^+\) (or \(\text{K}^+\)) ion is surrounded by twelve oxygen atoms from six \(\text{ClO}_4^-\) anions, while each \(\text{ClO}_4^-\) anion bridges two \(\text{Na}^+\) (or \(\text{K}^+\)) ions, forming a three-dimensional anionic framework consisting of cages that are filled with \(\text{H}_2\text{pz}^{2+}\) (or \(\text{H}_2\text{dabco}^{2+}\)) cations.

Compared with \(\text{H}_2\text{dabco}^{2+}\) in DAP-1, the \(\text{H}_2\text{pz}^{2+}\) cation is smaller and possesses a lower symmetry, according to the steric requirement of the larger \(\text{H}_2\text{dabco}^{2+}\) cation. As such a distorted framework could accumulate the \(\text{H}_2\text{pz}^{2+}\) cations in a more compact way, PAP-1 has a slightly-higher crystal density (2.07 g cm\(^{-3}\)) than DAP-1 (2.02 g cm\(^{-3}\)) at room temperature. Accordingly, the average Na⋯Cl atomic distance in PAP-1 (3.453 Å, see Table S2†) is shorter than that in DAP-1 (3.551 Å). These facts indicated that, owing to the smaller A-site cation, the anionic framework in PAP-1 has a weaker structural tension than that in DAP-1.

At 223 K, similar to PAP-1, DAP-O2 crystallizes in the monoclinic phase because the \(\text{H}_2\text{dabco}^{2+}\) cation also possesses a lower symmetry than the \(\text{H}_2\text{dabco}^{2+}\) cation. However, the order–disorder transition of such larger \(\text{H}_2\text{dabco}^{2+}\) cations allows DAP-O2 to undergo multi-step phase transitions (Fig. S6†), and be in a cubic phase (\(Fm\overline{3}c\)) at room temperature (Fig. 1b). Compared with its \(\text{H}_2\text{dabco}^{2+}\) analogue (DAP-2), DAP-O2 has a slightly-larger anionic framework (constructed from \(\text{K}^+\) and \(\text{ClO}_4^-\)) that is propped up by larger cations, as suggested by the fact that the average K⋯Cl atomic distance in DAP-O2 (3.670 Å, see Table S2†) is longer than that in DAP-2 (3.578 Å) at 223 K. Accordingly, the larger unit-cell volume of DAP-O2 results in a decrease of crystal density (1.98 g cm\(^{-3}\)) compared with that of DAP-2 (2.04 g cm\(^{-3}\)) at room temperature. These facts suggested that DAP-O2 has a stronger structural tension than DAP-2 because of the steric requirement of the larger \(\text{H}_2\text{dabco}^{2+}\) cation.

Thermal stability

The onset decomposition temperature (\(T_d\)) measured by DSC was 371 °C for PAP-1 and 329 °C for DAP-O2 (Table 1), respectively. Compared with the corresponding analogues, PAP-1 has a higher thermal stability than DAP-1 (344 °C), whereas DAP-O2 has a lower thermal stability than DAP-2 (364 °C). Such contrasting behaviours of PAP-1 and DAP-O2 may be ascribed to the difference in their structural tensions, namely,
a weaker structural tension could improve the thermal stability, while a stronger one could reduce the thermal stability. It is worth noting that the T_d of these molecular perovskite energetic materials are higher than those of classical single explosives, such as TNT, RDX, HMX and CL-20, thanks to the stable covalent-bonds of the molecular components and the inter-ionic Coulomb interactions.

Detonation parameters

In our previous work, oxygen-bomb calorimetry was employed to measure the heat of formation that was further inputted into EXPLO5 to predict the detonation performance. As the oxygen-bomb calorimetry measurements usually overestimate the heat of formation for halogen containing compounds (see the ESI†), herein, we adopted density functional theory (DFT) and the K-J equation (see the ESI†) to evaluate the detonation parameters for the DAPs. As listed in Table 2 and Fig. 2, the DFT calculation suggested that both DAP-1 and PAP-1 have better detonation performances than RDX, while DAP-2 and DAP-O2 have similar detonation performances to RDX. Compared with its H$_2$dabco$^{2+}$ analogue (DAP-1), PAP-1 has a reduced heat of detonation ($6.39 - 5.77$ kJ g$^{-1}$), but increased detonation velocity ($8.781 - 8.917$ km s$^{-1}$) and detonation pressure ($36.5 - 38.2$ GPa). Such an increase in the performance of PAP-1 should be attributed to the improvement on both oxygen balance (-22.0% and -3.9% for DAP-1 and PAP-1, respectively) and crystal density (2.02 and 2.07 g cm$^{-3}$ for DAP-1 and PAP-1, respectively). In contrast, when DAP-02 was compared with its H$_2$dabco$^{2+}$ analogue (DAP-2), the performances are slightly decreased: heat of detonation ($6.12 - 5.69$ kJ g$^{-1}$), detonation velocity ($8.591 - 8.327$ km s$^{-1}$) and detonation pressure ($35.2 - 32.5$ GPa), which should be ascribed to the fact that adding an O atom into H$_2$dabco$^{2+}$ by using H$_2$dabco-O$^{2-}$ cations only gives a slightly-optimized oxygen balance from -21.3% to -17.1% but causes a decrease in crystal density from 2.04 to 1.98 g cm$^{-3}$. Nevertheless, it should be pointed out that the real detonation reactions are very complicated; therefore, the aforementioned calculations could only roughly estimate the detonation performances as they are based on the assumed detonation reaction and empirical K-J equation with low precision. It is necessary to accurately measure the detonation parameters by performing experiments on the molecular perovskite materials in the next stage.

Table 2 Detonation properties of some well-known explosives and the series of molecular perovskite high-energetic materials

<table>
<thead>
<tr>
<th>Compound</th>
<th>ρ (g cm$^{-3}$)</th>
<th>Q (kJ g$^{-1}$)</th>
<th>D (km s$^{-1}$)</th>
<th>P (GPa)</th>
<th>OB^a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>1.65</td>
<td>3.74</td>
<td>6.897</td>
<td>20.0</td>
<td>-74.0</td>
</tr>
<tr>
<td>RDX</td>
<td>1.82</td>
<td>5.59</td>
<td>8.634</td>
<td>33.3</td>
<td>-21.6</td>
</tr>
<tr>
<td>HMX</td>
<td>1.96</td>
<td>5.58</td>
<td>9.096</td>
<td>38.6</td>
<td>-21.6</td>
</tr>
<tr>
<td>DAP-1</td>
<td>2.02$^\text{a}$</td>
<td>6.39</td>
<td>8.781</td>
<td>36.5</td>
<td>-22.0</td>
</tr>
<tr>
<td>PAP-1</td>
<td>2.07$^\text{a}$</td>
<td>5.77</td>
<td>8.917</td>
<td>38.2</td>
<td>-3.9</td>
</tr>
<tr>
<td>DAP-2</td>
<td>2.04$^\text{a}$</td>
<td>6.12</td>
<td>8.591</td>
<td>35.2</td>
<td>-21.3</td>
</tr>
<tr>
<td>DAP-O2</td>
<td>1.98$^\text{a}$</td>
<td>5.69</td>
<td>8.327</td>
<td>32.5</td>
<td>-17.1</td>
</tr>
</tbody>
</table>

$^\text{a}$ ρ is the density of the powder sample measured by capillary powder X-ray diffraction at room temperature; for classic explosives, ρ is the crystal density. $^\text{b}$ Q is the heat of detonation, D is the detonation velocity, and P is the detonation pressure. The detonation parameters were estimated by DFT calculations and the empirical K-J equation. $^\text{c}$ Oxygen balances based on CO$_2$ for C$_2$H$_5$N$_2$M$_M$Cl$_2$O$_2$, where M is the alkali metal ion, were calculated by: $\text{OB}%=[1600(f−2a−(b−e+d))/2]M_w$, where M_w is the molecular weight.

Conclusions

In summary, we presented two new members of molecular perovskite high-energetic materials, i.e., PAP-1 and DAP-O2, whose oxygen balances are optimized and compared with their H$_2$dabco$^{2+}$ analogues, i.e., DAP-1 and DAP-2, respectively, by employing two strategies for changing the A-site fuel cation, i.e., trimming the C and H atoms of the H$_2$pz$^{2+}$ cation in PAP-1 and adding an O atom to the H$_2$dabco-O$^{2-}$ cation in DAP-O2, respectively. Such two strategies have different influences on the overall performances. Trimming the C and H atoms from H$_2$dabco$^{2+}$ to afford a smaller H$_2$pz$^{2+}$ cation gives a significantly-optimized oxygen balance from -22.0% to -3.9% and an increased crystal density from 2.02 to 2.07 g cm$^{-3}$, resulting in improved detonation performances from DAP-1 to PAP-1. In contrast, adding an O atom to H$_2$dabco$^{2+}$ to afford a larger H$_2$dabco-O$^{2-}$ cation only gives a slightly-optimized oxygen balance from -21.3% to -17.1% but causes a decrease in crystal density from 2.04 to 1.98 g cm$^{-3}$, resulting in a decreased detonation performance from DAP-2 to DAP-O2. The present work demonstrated how to rationally choose the A-site cations in the perovskite structure to modulate the properties of molecular perovskite high-energetic materials, providing important clues for designing more advanced energetic materials for practical use.

Conflicts of interest

There are no conflicts to declare.
Acknowledgements

This work was supported by the NSFC (21290173 and 21722107). The authors thank the Xi’an Modern Chemistry Research Institute (Xi’an, China) for preforming the oxygen-bomb calorimetry.

Notes and references

