Accepted Manuscript

Insensitive high explosives: IV. Nitroguanidine -- Initiation & detonation

Ernst-Christian Koch

PII: S2214-9147(19)30216-8

DOI: https://doi.org/10.1016/j.dt.2019.05.009

Reference: DT 450

To appear in: Defence Technology

Received Date: 2 March 2019

Revised Date: 5 April 2019

Accepted Date: 17 May 2019

Please cite this article as: Koch E-C, Insensitive high explosives: IV. Nitroguanidine — Initiation & detonation, *Defence Technology* (2019), doi: https://doi.org/10.1016/j.dt.2019.05.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Insensitive High Explosives: IV. Nitroguanidine — Initiation & Detonation

Ernst-Christian Koch* Lutradyn – Energetic Materials D-67661 Kaiserslautern, Burgherrenstrasse 132 Web: <u>www.lutradyn.com</u>; E-Mail: <u>e-c.koch@lutradyn.com</u>

Abstract:

This paper reviews the detonative properties of low bulk density (LBD), high bulk density (HBD) Nitroguanidine (NGu)(1), CAS-No: [556-88-7] and 82 explosive formulations based on NGu reported in the public domain. To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen (HMX)(2), CAS-No: [2691-41-0], hexogen (RDX)(3), CAS-No: [121-82-4], pentaerythritol tetranitrate (PETN)(4), CAS-No: [78-11-5], 2,4,6-trinitrotoluene (TNT)(5), CAS-No: [118-96-7] as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone (NTO)(6), CAS-No: [932-64-9], 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)(7),CAS-No: [3058-38-6], 1,1-diamino-2,2dinitroethylene (FOX-7)(8), CAS-No: [145250-81-3] and N-guanylurea dinitramide (FOX 12)(9), CAS-No: [217464-38-5]. NGu based formulations are superior to those based on FOX-12 or TATB and are a closed match with FOX-7 based explosives, the latter just having higher Gurney Energies (~ 10%) and slightly higher detonation pressure (+ 2 %). NGu based explosives even reach up to 78 % of the detonation pressure, 82 % Gurney energy and up to 95 % of detonation velocity of HMX. LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu. Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations. The review gives 132 references to the public domain. For Part III of the series, a review on synthesis, structure, spectroscopy and sensitiveness of nitroguanidine see Ref. [1].

Keywords: Cook-Off, Detonation, Insensitive Munitions, Nitroguanidine, Shock Sensitvity,

1 Introduction

Nitroguanidine is an important ingredient in triple base and insensitive, low erosion gun propellants, rocket propellants, gas generators for automobile restraint systems, smoke free pyrotechnics and shock insensitive high explosives [2]. Though its use in high explosives is referred to in the literature [3-5] there lacks a comprehensive and contemporary overview of the detonative performance of nitroguanidine and its formulations and an assessment of the sensitiveness of these formulations and the response of munitions containing those formulations to insensitive munitions tests in accordance with NATO AOP-39 [6]. Fig. 1 displays the valence bond structures of nitroguanidine (1) and the reference explosives octogen (HMX)(2), hexogen (RDX)(3), pentaerythritol tetranitrate (PETN)(4), 2,4,6-trinitrotoluene (TNT)(5) as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone (NTO)(6), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)(7), 1,1-diamino-2,2-dinitroethylene (FOX-7)(8) and N-guanylurea dinitramide (FOX 12)(9). Table 1 list the basic properties of NGu and the main reference explosives.

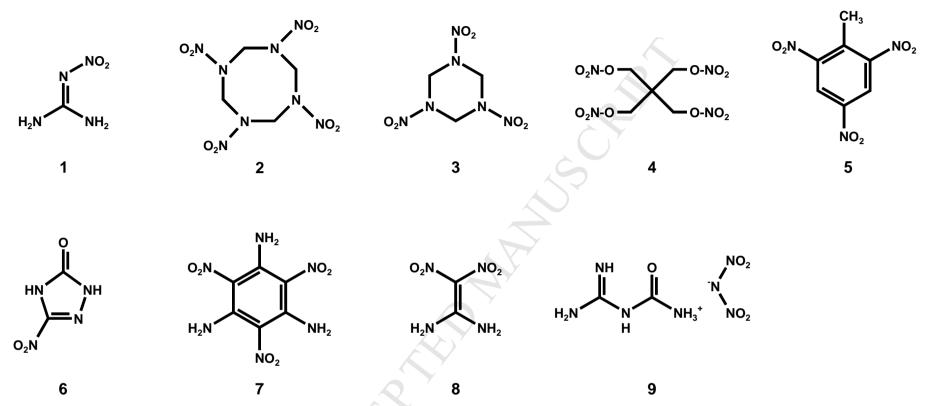


Fig.1 Structures of Nitroguanidine (1) and the reference explosives, HMX (2), RDX (3), PETN (4), TNT (5), NTO (6), TATB (7), FOX-7 (8), FOX-12 (9) dealt with in this review.

	1	2	3	4	5	6	7	-8	9
Formula	$CH_4N_4O_2$	$C_4H_8N_8O_8$	$C_3H_6N_6O_6$	$C_5H_8N_4O_{12}$	$C_6H_5N_3O_6$	$C_2H_2N_4O_3$	C6H6N6O6	$C_2H_4N_4O_4$	$C_2H_7N_7O_5$
CAS-No.	556-88-7	2691-41-0	121-82-4	78-11-5	118-96-7	932-64-9	3058-38-6	145250-81-3	217464-38-5
ρ (g cm-3)	1.77	1.906	1.806	1.778	1.654	1.93	1.937	1.907	1.76
mr (g mol-1)	104.068	296.156	222.117	316.138	227.133	130.063	258.15	148.08	209.121
⊿fH (kJ mol ⁻¹)	-98.74	84.01	66.94	-462	-67.07	-97	-154	-134	-356
Ω (wt%)	-30.75	-21.61	-21.61	-10.12	-73.96	-24.6	-55.78	-21.61	-19.13
mp (°C)	-	-	-	-	80.8	-	448 (dp)	-	-
dp (°C)	257	280	204	192	240	264		225	215

Table 1Basic thermochemical properties of the reference explosives dealt with in this report after Ref. [59]

 ρ = density; m_r = molecular weight; ΔH = enthalpy of formation, Ω = oxygen balance, mp = melting point; dp = decomposition point.

2 Thermochemistry

2.1. Enthalpy of formation and enthalpy of vaporisation

The solid-state enthalpy of formation of NGu ($\Delta t H^{\circ}$) has been determined several times by combustion calorimetry [7-10]. There is considerable scatter of data ($\Delta t H$ = -92 to -100 kJ mol⁻¹) and in Ref. 8 some variation of Δt H is attributed to different grain sizes with larger grains leading to lower combustion enthalpy. The gas phase enthalpy of formation has been estimated and calculated [11, 12]. The calculated value ($\Delta t H$ (g)= +44,77 kJ mol⁻¹)[12] fits the experimental data for the condensed state with the experimentally determined vaporization enthalpy ($\Delta t rap H$ = 142.7 kJ mol⁻¹)[13] adding up nicely according to

 $\Delta f H(s) = \Delta f H(g) + \Delta vap H = -97.93 \text{ kJ mol}^{-1}$

which is within the range of $\Delta H(s)$ determined experimentally above (Table 2).

⊿ _f H° (kJ mol⁻¹)	Reference state	Method	Ref	
-75.30	Solid	calorimetry	7	
-97.40	Solid	calorimetry	8	
$-93.72 \pm 1,67$	Solid (1-3 mm grain)	calorimetry	9	
-100.00 ± 2.51	Solid (0,2-0,8 mm grain)	calorimetry	10	
-92.05 ± 2.47	Solid	calorimetry	11	
-98.74	Solid	calorimetry	14	
-1.00 ± 20	Gas	estimation*	11	
+44.77	Gas	ab initio [#]	12	

Table 2Enthalpy of formation of nitroguanidine at 298.15 K for both condensed and gas
phase

*statistical mechanics, # B3LYP/6-311G(d,p)

2.2. Enthalpy of Detonation

From *Kamlet's* work it is known that the detonation velocity correlates with the fourth root of the detonation enthalpy,

VD ~
$$\Delta det H^{-0,25}$$
,

whereas the detonation pressure correlates with the square root of the detonation enthalpy,

$$P_{CJ} \sim \Delta_{det} H^{-0,50} [15-18].$$

Precise knowledge of Δ_{det} H is therefore essential to assess the detonative performance of a high explosive. However, this is difficult as the enthalpy of detonation is the heat released in the CJ-point and there is no way in experimentally determining this. Experimental determinations from detonation calorimeters using heavily confined charges (e.g. gold) hence rather correspond to the freeze-out region of the expansion isentrope and are correspondingly yield

higher values than would be found exactly at the CJ point. $\Delta_{det}H$ can be calculated either based on semiempirical methods or based on the chemical composition of the post detonation residues from closed vessel detonations under an inert gas. In addition, $\Delta_{det}H$ can be determined in a detonation calorimeter from firing heavily confined (e.g. gold) charges [19].

2.2.1. Semiempirical Calculation of Enthalpy of Detonation

The enthalpy of detonation can be estimated [20] or calculated based on the rules presented by *Cooper* [21].

 $CH_4N_4O_2 \longrightarrow 2 N_2 + 2 H_2O(g) + C(s)$

(1)

Based on Krien's value [10] for the enthalpy of formation using Cooper's method yields

 $\Delta_{det}H(NGu) = -391.55 \text{ kJ mol}^{-1}.$

Taking into account the molar mass of NGu (mr: 104.068 g mol-1) this equals

 $\Delta_{det}H(NGu) = -3.762 \text{ kJ g}^{-1}.$

2.2.2. Calculation of Enthalpy of Detonation based on Detonation Products

Pure NGu with low porosity is relatively hard to initiate and small charges (ø < 40 mm) do not detonate ideally due to having a large critical diameter and quite a long run to detonation distance [22]. Hence closed chamber (V = 1.5 m³) detonation experiments in Ar-atmosphere have been conducted with NGu/TNT-based melt cast charges (hereafter designated Nigutol) with NGu-contents ranging from 40-60 wt.-% [23, 24]. Although the formal detonation according to Eq. 1 yields N₂, H₂O and C it is however observed upon analysis of the post detonation gases that significant amounts of both ammonia and hydrogen cyanide are formed. Table 3 shows the product composition for the detonation of both Comp B and various Nigutol charges in argon (0.1 MPa) highlighting the aforementioned.

Product	⊿fH°	Comp	o B	Nigut	tol-40	Nigu	tol-50	Nigut	ol-60
	(kJ mol [.]			(1)		(2)		(3)	
	1))							
Density (g cm ⁻³)		1.69	*	1.62	*	1.63	*	1.64	*
N2 (mol-%)	0	23.4	24.0	21.8	17.9	23.1	18.4	24.8	18.8
H ₂ (mol-%)	0	5.5	1.4	3.7	0.5	3.3	0.4	2.4	0.2
CO (mol-%)	-110	20.4	17.7	16.5	7.0	14.9	4.9	11.8	3.3
CO ₂ (mol-%)	-294	10.8	9.5	10.9	5.0	14.3	4.0	11.6	3.2
CH4 (mol-%)	-75	0.2	1.6	0.3	1.0	0.2	0.8	0.3	0.1
HCN (mol-%)	+130	0.6		2.3		2.9		2.7	
NH₃(mol-%)	-46	2.9	0.1	6.2	0.7	11.4	0.1	11.6	0.1
H2O (mol-%)	-285	19.6	23.1	17.2	19.4	13.7	19.5	16.3	19.6
C(s) (mol-%)	0	16.6	16.8	21.1	21.5	16.3	19.1	16.5	16.9
NO (ppm)	+90	25		116		66		4000	

Table 3Composition and enthalpy of formation of experimentally measured and calculated
[25] post-detonation products from Comp B and Nigutol-50 [26].

Based on the above compositions the detonation enthalpy has been determined and is reproduced in Table 4.

Composition	1	2	3
NGu (wt%)	40	50	60
TNT (wt%)	60	50	40
Density (g cm ⁻³)	1.62	1.63	1.64
$\Delta \det H (kJ g^{-1})$	-3.909	-3.742	-3.536

Table 4Detonation enthalpy, H2O(g), of various Nigutol composites

In first approximation the enthalpy of detonation of a composition of two immiscible high explosives with both negative oxygen balance *A* and *B* the weight fractions *n* and *m* respectively is the sum of the enthalpy of detonation of its components.

 $\Delta_{det}H(n \cdot A + m \cdot B) = n \cdot \Delta_{det}H(A) + m \cdot \Delta_{det}H(B)$

This assumes any chemical interaction of the individual explosive particles and their initial decomposition products does not occur until <u>after</u> reaching the CJ point. Table 5 compares the measured detonation enthalpy for RDX, HMX, TNT, Comp B and Octol with those values calculated detonation enthalpy for Comp B and Octol from Ref. [19] based on Eq. 4. Evidently the measured and calculated values for both compositions are within 1 % of error.

Table 5	Enthalpy of detonation of TNT, RDX and Comp B									
	TNT	RDX	HMX	Comp B	Comp B	Octol*	Octol			
					Calc.		Calc.			
Δ detH (kJ g ⁻¹)) 4.477	6.075	6.188	5.527	5.436	5.694	5.736			
*73.58 wt% H	MX, 26.42 wt9	6 TNT								

Rearrangement of Eq. 4 to resolve the enthalpy of detonation of NGu based from the detonation enthalpy of its composite Nigutol (TNT+NGu) with its weight fraction *n* yields Eq. 5:

$$\Delta_{det}H(NGu) = \{\Delta_{det}H(Nigutol) - m \cdot \Delta_{det}H(TNT)\}/n$$
(5)

Inserting the individual figures from table 3 and the value for TNT from table 4 yields the Δ_{det} H (NGu) values depicted in Table 6.

 Table 6
 Enthalpy of detonation of NGu from various Nigutol-composites

	1	2	3	Mean
Δ detH (kJ g ⁻¹)	-3,057	-3,007	-2,909	-2,991

The obtained value for $\Delta_{det}H$ (NGu) = -2,991 kJ g⁻¹ is very close (- 1%) to a value cited in *Fedoroffs Encyclopedia of Explosives* $\Delta_{det}H$ (NGu) = -3,016 kJ g⁻¹ [3b] giving some support for the latter.

(4)

3 Detonation

3.2. Detonation of neat NGu

3.2.1. High Velocity Detonation (HVD) of neat NGu

Gogyula et al. optically determined the detonation temperature for NGu (ρ = 1.649 g cm⁻³) to 2562 K [27] which is in the same ball park as the temperature calculated for a charge with the same density 2830 K.

3.2.1.1. Detonation Velocity

Price et al have investigated the detonation velocity and critical diameter for neat unconfined NGu charges [28, 29]. The infinite diameter law for charges with densities ranging from $\rho_0 = 1.00 - 1.78$ g cm⁻³ accordingly reads

 $V_{D_{\infty}}(experiment) = 1440 + 4015 \cdot \rho_0 \text{ (m s}^{-1})$

Predictions with Cheetah 7.0 [30] based on an enthalpy of formation of NGu of $\Delta H = -98.74 \text{ kJ}$ mol⁻¹ call for a significant steeper slope

 $V_{D_{\infty}}$ (Cheetah 7.0) = -747.5 + 5388 · ρ_0 (m s⁻¹)

and overshoot the actual performance at $\rho_0 > 1.6$ g cm⁻³, while predictions with Cheetah 2.0 [25] using the same enthalpy of formation show a slope more alike the experimentally determined one but undershoot the actual performance nearly constantly by 3 - 4 % in the range between $\rho_0 = 1.55 - 1.78$ g cm⁻³ (Fig. 1).

 $V_{D_{\infty}}$ (Cheetah 2.0) = 836.1 + 4220 · ρ_0 (m s⁻¹) (3.2-3) Experimental and calculated data on neat FOX-12 [31] shown in Fig. 2 indicate that FOX-12 has a lower detonation velocity than NGu at given density.

(3.2-1)

(3.2-2)

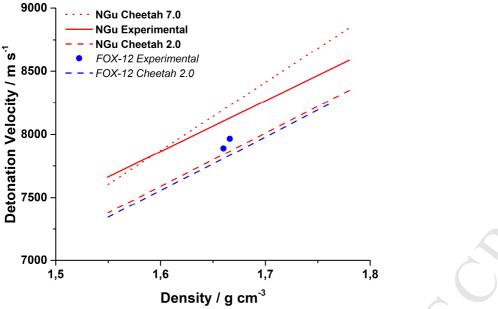
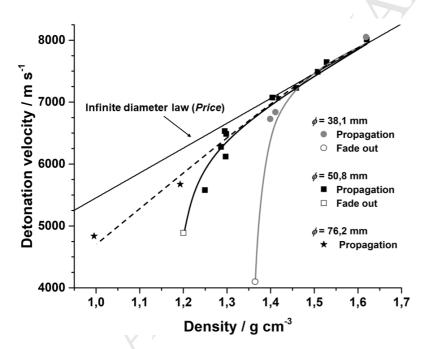
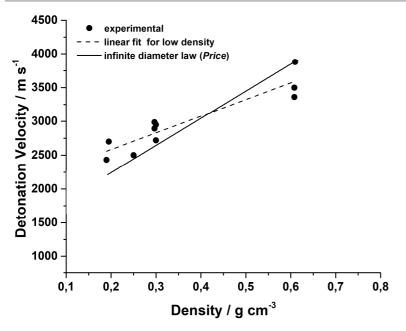
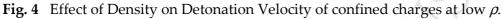


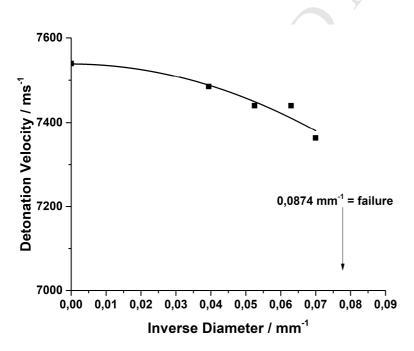
Fig. 2 Experimental and calculated infinite diameter detonation velocity of NGu and FOX-12

Fig. 3 shows the influence of density on fixed diameter charges. With decreasing density, the detonation velocity of the individual diameter charges fans away from the infinite diameter line (Fig. 3) as is also observed with many group 1 high explosives [32].

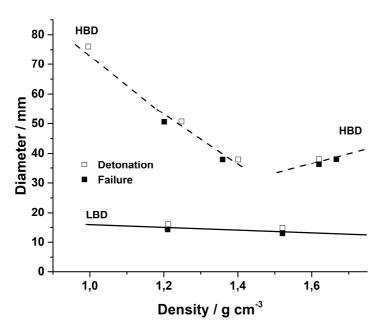




Fig. 3 Effect of Density on Detonation Velocity at two fixed diameters

Even at densities, much lower than $\rho < 0.6$ g cm⁻³, the detonation velocity of NGu about follows *Price's* law (Fig. 4) but can be fitted more appropriately with the expression


$$V_{D_{\infty}}(experiment) = 2091 + 2464 \cdot \rho_0 (m \text{ s}^{-1})$$

(3.2-4)



The inverse diameter detonation velocity relationship for unconfined $\rho = 1.51$ g cm⁻³ is depicted in Fig 5. Below charge diameters of $\phi = 14$ mm the detonation fades out. Depending on the particle type of NGu LBD or HBD [1] the fade-out diameter for charges of varying density appears to differ as is depicted in Fig. 6. Thus, in the considered density range LBD can be assigned a group 1 HE whereas HBD behaves like a group 2 material [29].

Fig. 5 Diameter Effect on Detonation Velocity at $\rho_0 = 1.514$ g cm⁻³.

In comparison the critical diameter for FOX-12 with densities $1.60 \le \rho \le 1.67$ ranges from 24 - 54 mm [31].

3.2.1.2. Detonation Pressure

Mader reasoned that the plate dent test typically applied to probe the P_{CJ}-pressure is an inadequate tool for Nitroguanidine and its formulation as NGu fails to correlate with its P_{CJ} pressure due to its low energy and the resulting steep isentrope compared to most other explosives [33a]. Poor plate dent results for NGu in turn have fed the unsubstantiated "reputation" that NGu is an inferior explosive. Hence the data referred to in this review exclusively stem from copper cylinder tests unlike otherwise stated.

The experimentally determined detonation pressure for charges with densities ranging from 0.19 to 1.7 g cm³ are given in Table 7 [27, 34-38] and depicted in Fig. 7 together with the detonation pressure of neat FOX-12 [39] ($P_{CI}(\rho = 1.666 \text{ g cm}^{-3}) = 26.11 \text{ GPa}$) and the calculated P_{CI} for both NGu and FOX-12. *Mader* also reasoned that though NGu has only half the detonation enthalpy of Comp B (see Table 5 and Table 6) it still performs comparable due to its favourable particle density of the detonation products due to the high hydrogen content in the explosive and consequently the water content in the final products [33b].

Table / Expe	mema		NGu at C	interent	uensine	5				
Density (g cm ⁻³)	0.195	0.5	0.72	0.85	1	1.1	1.25	1.4	1.635	1.72
Pcj (GPa)	0.63	1.48	2.39	3.28	4.2	4.87	10.3	15.8	28.63	24.5
Ref	34	35	36, 37	36, 37	36, 37	36, 37	36, 37	36, 37	27	38

 Table 7
 Experimental Pcr of NGu at different densities

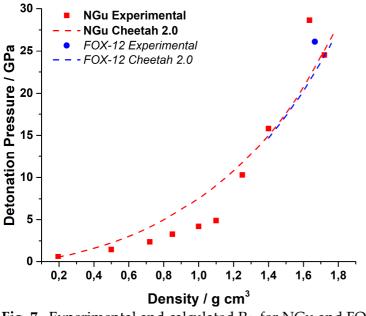


Fig. 7 Experimental and calculated PcJ for NGu and FOX-12.

3.2.1.3. Gurney Energy

The Gurney energy, E_G (J g⁻¹) and Gurney velocity, $\sqrt{2E_G}$ (m s⁻¹), dealt with in the context of this review relate to the corresponding energies and velocities determined for the relative expansion of copper cylinders (ID = 25.4 mm, wall thickness 2.54 mm) at $r_a = 5 - 7$ mm and $r_a = 19 - 26$ mm respectively. Table 8 displays the $\sqrt{2E_G}$ for NGu [40, 41], FOX-12 [42] and several reference high explosives [41, 43]. The Gurney Energy typically drops with decreasing density for a given explosive [43, 41]. Hence the low figure measured with NGu is not unusual. The Gurney energies of various formulations are presented further down in § 3.3.

High Explosive	Density	% TMD	$\sqrt{2E_G}$	$\sqrt{2E_G}$	Vw	V/V ₀ =9.0	Ref
	(g cm ⁻³)		5 – 7 mm	19 -26 mm	(m s-1)	(kJ cm ⁻³)	
		$\wedge \mathbf{Y}$	(m s ⁻¹)	(m s-1)			
PETN	1.765	99.3		3030		-8.68	43
	1.5	84.4		2900		-6.79	43
	1.27	71.4		2690		-5.33	43
HMX	1.891	99.2		3110		-9.74	43
	1.19	62.4		2740		-5.02	43
	1.81	95.0			2130	-9.12	44
NGu	1.44	81.0	1896			-4.54	40, 41
	1.635	92.9			1780	-5.46	44
TNT	1.61	97.3	2097			-5.54	41
	1.63	98.5	2039	2462		-5.65	41
FOX-12	1.666	94.7		2374		-5.84	42

Table 8Gurney Velocity for various neat high explosives

3.2.2. Low Velocity Detonation (LVD) of neat NGu

At charge densities below $\rho = 1.2$ g cm⁻³, HBD shows a stable low velocity detonation (LVD). Fig. 8 depicts the observed velocities and Fig. 6 shows the critical diameter for LVD with charges based on HBD after *Price* [32].

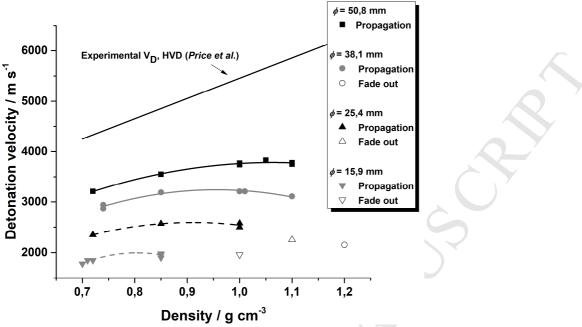
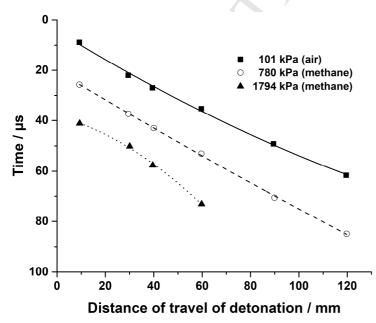



Fig. 8 Diameter Effect on LVD HBD at different diameters.

The effect of density on LVD has been tested by *Montesi* in the context of investigations on the water arm air safe detonator (WARAS) [45, 46].

In low density charges ($\rho = 0.5 \text{ g cm}^{-3}$) of NGu the gas pressure of the pockets has a distinct influence on the propagation of LVD and high pressures diminish propagation velocity and eventually inhibit propagation (Fig. 9) [47].

Fig. 9 Influence of gas pressure on propagation of 11,11 mm diameter NGu-charges at $\rho = 0.5$ g cm⁻³.

3.2.3. Shock wave Hugoniot data on neat NGu

Hugoniot curve data for neat NGu of different particle density are presented as U_s - u_p and P-V diagram in Fig. 10 and 11. [4b, 48].

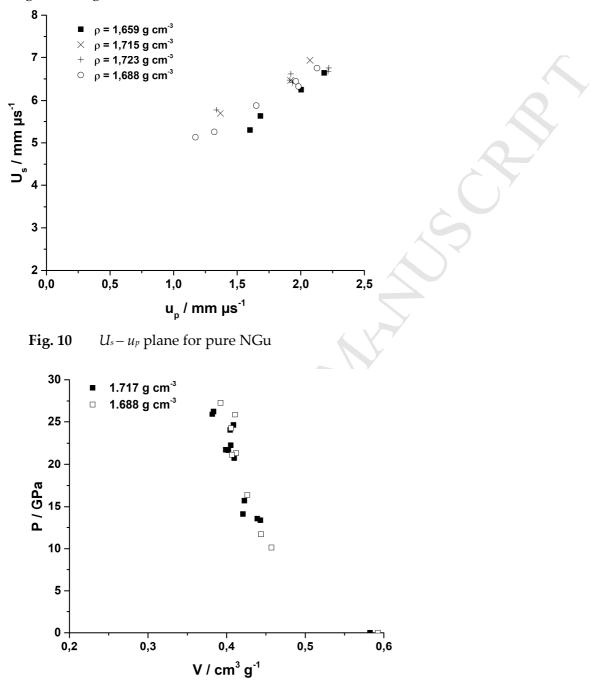


Fig. 11 *P*–*V* plane for pure NGu

3.3. Detonation of NGu-based formulations

3.3.1. Melt-castable formulations

3.3.1.1. NGu-TNT (Nigutol)

By far the most thoroughly studied NGu-based high explosives mixtures are those based on TNT as melt cast binder. NGu/TNT mixtures (Nigutol), current German Code: SSM TN 8XXX, were initially developed as high explosives in wartime Germany [49, 50] and were then used as an insensitive filler for armour piercing naval artillery shells. Research into Nigutol was resumed in Germany in the 1980s and the US in the early 1990s when new cheap insensitive high explosives were sought. This research was also motivated by new crystallisation processes developed then which allowed to produce NGu with high spherical high bulk density > 1.0 g cm⁻³ [1]. Also, the first nanodiamonds formed by detonation were found by *Volk et al.* in the detonation soot of Nigutol and TATB/TNT mixtures [51].

The detonation enthalpy of various Nigutol formulations has been determined by *Volk* and *Schedlbauer* [23, 24] and is already given above in Table 6. Fig. 12 compares the experimental and calculated detonation enthalpy at given experimental density for Nigutol. The free-

standing charges (\emptyset = 50 mm) yield about 88 % of the calculated enthalpy whereas the charge confined in 9 mm glass yields 92 % of the calculated enthalpy.

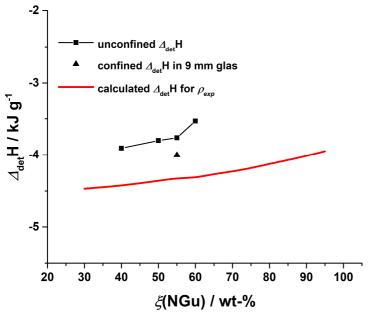
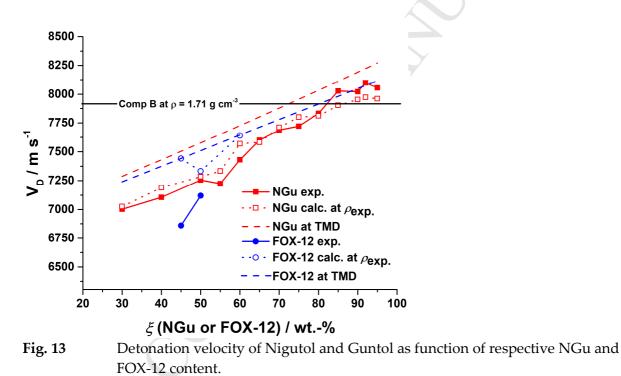



Fig. 12 Detonation enthalpy of Nigutol

The critical diameter has been determined for Nigutol-50 with different particle types and size distributions as is indicated in Table 9 [52, 53]. The general observation is that small particle sizes yield smaller critical diameters.

Table 9		Critical diameter of Nigutol- 50 with SHBD and HBD [52,												
	d_p	Øcr	ρ	% TMD	VD									
	(µm)	(mm)	(g cm ⁻³)	1.710 g cm ⁻³	(m s ⁻¹)									
HBD	105-210	< 19	1.663	97.25	7400									
HBD	297-420	29 ± 3	1.643	96.08	7280									
SHBD	105-210	< 19	1.638	95.79	7620									
SHBD	297-420	25 ± 3	1.636	95.67	7430									

Schedlbauer [54], and *Lungenstraß* [55] investigated a large array of Nigutol formulations (Table 10). Fig. 13 depicts the experimental detonation velocity, the calculated detonation velocity at TMD the calculated detonation velocity at the experimental density for Nigutol and Guntol (FOX-12/TNT) [56] and the baseline experimental detonation velocity of Comp B at $\rho = 1.71$ g cm⁻³ for comparison. In general, the experimental detonation velocities for Nigutol with ξ (NGu) < 80 wt.-% undershoot the calculations in average by 2 % whereas at ξ (NGu) = 80 wt.-% and beyond the experimental detonation velocities are higher than calculated at given experimental density and supersede the Comp B baseline performance. The few Guntol (FOX-12/TNT) formulations investigated exhibit lower experimental detonation velocities at corresponding stoichiometries.

The experimental detonation velocity of aluminized Nigutol and one single aluminized Guntol (Guntonal) [56]. Is shown in Table 11 [54, 57].

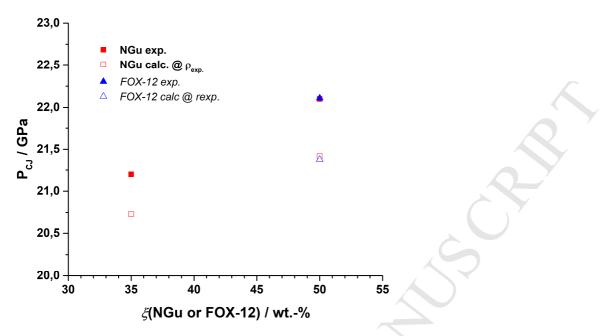

NGu (wt%)	95	92	90	85	80	75	70	65	60	55	50	40	30		
FOX-12 (wt%)														50	45
TNT (wt%)	5	8	10	15	20	25	30	35	40	45	50	60	70	50	55
ρ_{exp} (g cm ⁻³)	1.69	1.70	1.70	1.70	1.69	1.70	1.69	1.67	1.68	1.63	1.63	1.63	1.61	1.652	1.63
VDexp (m s ⁻¹)	8056	-	8022	8029	7833	7721	7687	7600	7431	7224	7255	7106	7002	7120	6860
at 20 mm diameter [55]		8100							7140		r				

Table 10Detonation velocity of various Nigutol (unconfined ø = 50 mm) and two Guntol (Cu-confined, ø = 60 mm) formulations

Table 11Detonation velocity of various aluminized Nigutol (unconfined $\phi = 50$ mm) and one aluminized Guntol (*Guntonal*) (Cu-confined,
 $\phi = 60$ mm) formulations

NGu (wt%)	50	45	40	35	35	33	31	30	30	30	28	28	26	25	25	23.5	22	
FOX-12 (wt%)																		42.5
TNT (wt%)	35	45	50	50	45	42	42	50	45	40	45	42	47	45	40	46.5	48	
Al (wt%)	15	10	10	15	20	25	27	20	25	30	27	30	27	30	35	30	30	15
ρ_{exp} (g cm ⁻³)	1.76	1.72	1.72	1.75	1.81	1.89	1.86	1.78	1.89	1.88	1.85	1.88	1.86	1.87	1.89	1.87	1.86	1.77
VDexp (m s ⁻¹)	7143	7171	7109	7072	6828	6881	6952	6841	6881	6991	6901	6904	6803	6794	6800	6677	6617	7160

The detonation pressure determined by cylinder tests has been reported by *Hornberg* for Nigutol-35, -50 (Fig. 14) and aluminized Nigutol [58]. Table 12 displays those values together with formulations based on FOX-12.

Fig. 14 Detonation pressure of TNT/NGu and TNT/FOX-12 as a function of stoichiometry.

Table 12	Detonation pres	sure of Nigutol	and related	formulations

High Explosive	Density	Рсј	Рсј	Рсј	Ref
	(g cm ⁻³)	Cylinder test	Plate dent	Calculated	
		(GPa)	(GPa)	(GPa)	
NGu/TNT/Al (31/42/27)	1.849	20.8		19.13	58
NGu/TNT/Al (35/50/15)	1.745	22.7		19.65	58
Nigutol-35	1.658	21.2		20.73	58
Nigutol-50	1.665	22.1		21.42	58
	1.663		20.9	21.35	52, 53
	1.643		20.9	20.68	52, 53
	1.638		21.1	20.52	52, 53
	1.636		21.8	20.45	52, 53
TNT		21.0			59
Guntol-45		20.6			60
Guntol-50	1.652	22.1		20.92	60
FOX-12/TNT/Al	1.795	23.5		21.76	60
(42.5/42.5/15)					
	1.771	21.2		20.94	60

The Gurney-Velocities of Nigutol and Guntol modified with either or both nitramine and aluminium are presented in Table 13. In essence Gurney-Energy for Nigutol is between 10 – 17 % higher than for Guntol. Remarkable is that Nigutol-50 is equally powerful as Guntol (35/40) modified with 25 wt-% HMX (sic). While adding aluminium has no pronounced effect on Nigutol-35 the Gurney velocities of Guntol apparently decreases.

High Explosive	Density	$\sqrt{2E_G}$	$\sqrt{2E_G}$	V/V ₀ =9.0	Ref
	(g cm-3)	5 - 7 mm	19 -26 mm	(kJ cm ⁻³)	
		(m s-1)	(m s-1)		
Nigutol-35	1.658		2300	-5.81	58
Nigutol-50	1.665		2441	-5.83	57
Nigutol-60	1.69		2320	-5.95	61
NGu/TNT/Al (31/42/27)	1.849		2039	-6.27	58
NGu/TNT/Al (35/50/15)	1.745		2300	-6.09	58
NGu/TNT/RDX(40/40/20)	1.71		2500	-6.53	61
Comp B (60/40)	1.73		2730	-7.61	59
TNT	1.63	1950		-5.65	59
Guntol-45		1950	2070		62
Guntol-50	1.652	1951		-5.75	60
FOX-12/TNT/Al (42.5/42.5/15)	1.759	1942		-6.36	56,
					60
FOX-12/TNT/RDX (35/40/25)		2050	2300		56,
					62
FOX-12/TNT/RDX/A1 (35/35/15/15)		1870	2230		56,
					62
FOX-12/TNT/HMX (35/40/25)		2100	2440		56,
					62
FOX-12/TNT/HMX/Al (35/35/15/15)		1855			56,
					62

Table 13

Gurney Velocity for various melt cast NGu-based explosives

3.3.1.2.IMX-101 and ALIMX-101

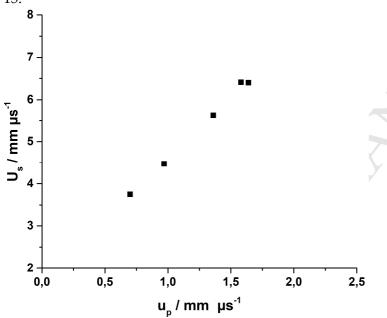

Two important NGu-based melt cast formulations comprising NTO as an additional insensitive filler are IMX-101 [63] (formerly known as OSX-CAN) and its aluminised derivative ALIMX-101 [64]. Table 14 displays the disclosed composition for IMX-101 and the alleged formulation for ALIMX-101, Table 15 shows the performance. Due to the large critical diameter of IMX-101 neither plate dent nor aquarium test have been conducted so far. The values used in Ref. [66, 68] are based on a Cheetah 4.0 calculation at $\rho = 1.63$ g cm⁻³.

Table 14	Composition of NGu-based melt cast insensitive high explosiv					
Component	CAS-no	IMX-101	ALIMX-101			
TMD (g cm ⁻³)		1.688	1.800	-		
NGu (wt%)	556-88-7	36.8 ± 2	~ 32			
Aluminium (wt%)	7429-90-5		~ 24			
2,4-DNAN (wt%)	119-27-7	43.5 ± 2	~ 34			
NTO (wt%)	932-64-9	19.7 ± 2	~ 10			

Table 15	Performance of IMX-101 and ALIMX-101 [65-67]					
		IMX-101			ALIMX-10	1
	TN	AD: 1.688 g	cm ⁻³	TM	ID: 1.845 g	cm ⁻³
	exp.	calc. at	calc. at	exp.	calc at	calc. at
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.63	1.63	TMD	1.81	1.81	TMD
VD(exp.) (m s ⁻¹)	6885*	7032	7245	6825	7029	7183
Ø _{cr} (mm)	64 - 68			< 127		
Pcj (GPa)		18.8	20.6		19.5	20.6
Tcj (K)		3084	3072		4916	4909
√2EG 19-26 mm (m s ⁻¹)	2036					
$E(V/V_0 = 9.0)$ (kJ cm ⁻³)	-5.24	-5.20	-5.49		-7.11	-7.32
γ(-)	44.03					

*) at 82 mm diameter

The unreacted Hugoniot data for IMX was obtained by *Roth* et al. [68] and is displayed in Fig. 15.

Fig. 15 $U_s - u_p$ plane for IMX-101 at $\rho = 1.63$ g cm⁻³.

3.3.1.3.PrNGu-NGu-HMX

n-Propylnitroguanidine (PrNGu) (mp: 98.5 °C) is a substance currently investigated as potential melt-cast base for high explosives [69]. As a crystal density is unknown its density has been estimated using *Ammon's* procedure [70] to ρ =1.35 g cm⁻³. A ternary formulation comprising about equal amounts PrNGu, NGu and HMX has been investigated by *Samuels et al.* (Table 16 and 17) [71]

 Table 16
 Composition of NGu-based melt cast insensitive high explosives

Component	CAS-no	
TMD (g cm ⁻³)		1.524
NGu (wt%)	556-88-7	35
PrNGu (wt%)	35091-64-6	34
HMX (wt%)	2691-41-0	31

Table 17	Performance of NGu-PrNGu-HMX [7							
Unit		NGu	-PrNGu-	HMX				
ρ_{exp} . (g cm ⁻³) (Δ))	1.59	TMD	TMD				
V _D (exp.) (m s ⁻¹)		7710	7475	7716				
Øcr (mm)								
Pcj (GPa)			20.42	22.52				
Тсј (К)			2952	2932				
√2Ес 19-26 mm	(m s ⁻¹)							
$E(V/V_0 = 9.0)$ (k)	J cm ⁻³)		-5.59	-5.90				

3.3.1.4. Eutectic Systems based on NGu

NGu forms a series of eutectic systems with other explosive materials and dissolves nicely in many energetic ionic liquids. Hence highly dense charges can be obtained entirely without using costly SHBD.

Manuelli and *Bernadini* were the first to claim eutectic melt-castable formulations named *Albite*, based on NGu, ammonium nitrate and guanidinium nitrate with melting points below 130 °C [72]. Urbanski and Skrzynecki found that a formulation

NGA

•	Nitroguanidine	17.5 wt%
•	Guanidinium nitrate	22.5 wt%
•	Ammonium nitrate	60.0 wt%

would melt as low as 113. 2°C [73]. In addition, they found two other binary eutectic mixtures

%

•	Nitroguanidine	20 wt%
•	Ammonium nitrate	80 wt%
	mp: 131.5 °C	

•	Nitroguanidine		41 wt
---	----------------	--	-------

• Guanidinium nitrate 59 wt.-% mp: 166.5 °C

While neither *Manuelli* nor *Urbanski* have reported any data on the performance of NGA or any of the other formulations, *Akts &Herskovitz* have tested blends of NGA with other HE (Table 18 and Table 19) [74]. The critical diameter in steel confinement is well below 9.65 mm for NGA/AN/RDX while NGA/AN has a limiting diameter well above 9.65 mm. Though the detonation pressure nicely correlates with calculations for NGA/AN/RDX the detonation velocity falls dramatically short by 16 % against predictions with Cheetah 2.0.

Table 18Comp	Composition of NGu-based melt cast insensitive high explosives							
Component	CAS-no	NGA	NGA + AN	NGA /AN/RDX				
TMD (g cm ⁻³)		1.656	1.695	1.738				
NGu (wt%)	556-88-7	17.5	7.00	4.20				
Guanidinium nitrate (wt%)	506-93-4	22.5	9.00	5.40				
Ammonium nitrate (wt%)	6484-52-2	60.0	84.00	50.4				
Hexogen (wt%)	121-82-4	-	-	40.0				

Table 19	Performance of NGA, NGA/AN and NGA/AN/RRDX [74]								
		NGA	L		NGA/A	N	NGA/AN/RDX		RDX
	TMD: 1.688 g cm ⁻³		TM	D: 1.845	g cm ⁻³				
	exp.	calc.	calc. at	exp.	calc	calc. at	exp.	calc.	calc.
	_	at		-	at		_	at	at
$\rho_{exp.}$ (g cm ⁻³) (Δ)	-	-	TMD	1.60	1.60	TMD	1.66		TMD
V _D (exp.) (m s ⁻¹)	-	-	7932	10 H	6930	7336	7170	8319	8680
Ø _{cr} (mm)	-	-		at 9.65 ameter teel					
Pcj (GPa)	-	-	22.13	id at 9.65 diameter 1 steel	15.91	18.42	25	25.3	28.67
Тсј (К)	-	-	2707	Failed mm dia in st				3376	3349
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$	-	-	-5.56	Цц	-3.77	-4.07		-6.92	-7.40

3.3.1.4.1. NGu-AN-ADNT

Ammonium 3,5-dinitro-1,2,4-triazolate, ADNT (Fig. 16) (ρ = 1.75 g cm⁻³, mp: 168 °C, Δ_t H: +4 kJ mol⁻¹) forms a eutectic mixture with AN melting at 112 °C [75] which dissolves up to 12 wt-% [76] of LBD-NGu. Two formulations with 33 and about 40 % NGu (dissolved content plus HBD-NGu) have been formulated and tested (see Table 20 and Table 21). The experimental CJ-pressures exceed the predicted values by 6-8 %.

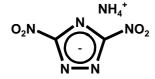


Fig. 16 Structure of ADNT

Table 20Composition of NGu-b	Composition of NGu-based melt cast insensitive high explosives					
Component	CAS-no	1	2			
TMD (g cm ⁻³)	Y	1.749	1.751			
NGu (wt%)	556-88-7	33.38	39.92			
Ammonium 3,5-dinitro-1,2,4-triazolate (wt%)	67265-22-9	40.94	36.92			
Ammonium nitrate (wt%)	6484-52-2	25.68	23.16			

Table 21	Performance of NGA, NGA/AN and NGA/AN/RRDX [76]
----------	---

		1			2		
	TM	D: 1.749	g cm ⁻³	TMD: 1.751 g cm ⁻³			
	exp.	calc.	calc. at	exp.	calc	calc. at	
		at			at		
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.655	1.655	TMD	1.654	1.654	TMD	
V _D (exp.) (m s ⁻¹)		8105	8522	8160	8075	8500	
Pcj (GPa)	26.1	24.18-	27.84	25.5	23.99	27.74	
Тсј (К)	-	3199	3159		3161	3120	
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$	-	-6.23	-6.78		-6.17	-6.72	

3.3.1.4.2. NGu-AN-EDDN

Ethylenediammonium dinitrate, EDDN (Fig. 17) (ρ = 1.603 g cm⁻³, mp: 186 °C, Δ _fH: -653 kJ mol⁻¹) forms a eutectic mixture with AN melting at 98 °C and freezing at 81 °C [77] and dissolves LBD-NGu (Table 22 and 23).

NH₃ NO₃ + O₃N H₃N

Fig. 17 Structure of EDDN

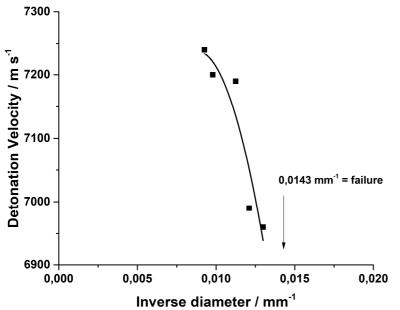
Table 22Composition of N	Composition of NGu-based melt cast insensitive high explosives					
Component	CAS-no	NEAK	NEAK + NGu	NEA		
TMD (g cm ⁻³)		1.689	1.725	1.692		
NGu (wt%)	556-88-7	8.0	49.1	30.0		
Ethylenediammonium dinitrate (wt%)	20829-66-7	46.0	25.0	35.0		
Potassium nitrate (wt%)	7757-79-1	7.0	3.75			
Ammonium nitrate (wt%)	6484-52-2	39.0	21.15	35.0		
Microspheres (wt%)	-		1.0			

Table 23	Performa	Performance of NEAK [77-79]							
		NEAF	K	N	EAK + N	NGu		NEA	
	TM	D: 1.6895	5 g cm ⁻³	TM	D: 1.725	g cm-3	TME): 1.692	g cm-3
	exp.	calc.	calc.	exp.	calc.	calc.	exp.	calc	calc.
		at	at		at	at			at
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.64	1.64	TMD	1.59	1.59	TMD	???		TMD
VD(exp.) (m s-1)	8020	7785	8013	7420	7550	8149	5670		8073
Pcj (GPa)		21.33	22.99		19.90	24.57			23.99
Tcj (K)		2819	2805		2837	2795			2835
$\sqrt{2E_{\rm G}}$ 19-26 mm (m s ⁻¹) 2510			-					
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$	-	-5.57	-5.82		-5.27	-5.95			-6.03

3.3.1.4.3. NGu-AN-MeNGu

NGu forms a eutectic with its methylated derivative MeNGu melting at 128 °C [80]. Likewise, AN forms two eutectics with MeNGu melting at 117 and 118 °C [81]. Three formulations have been reported (Table 24 and 25).

Table 24NG	NGu-AN-MeNGu			
Component	CAS-no	Ι	II	III
TMD (g cm ⁻³)	7	1.630	1.711	1.850
NGu (wt%)	556-88-7	11.3	64.52	53.39
Methylnitroguanidine (wt	%) 4245-76-5	45.0	18.00	13.50
Ammonium nitrate (wt%)	6484-52-2	39.2	15.68	11.76
Aluminium (wt%)	7429-90-5			20.00
Sodium nitrate (wt%)	7631-99-4	4.5	1.80	1.35


Table 25	Performance of NGu-AN-MeNGu [81]								
		Ι			II			III	
	TM	TMD: 1.630 g cm ⁻³		TM	TMD: 1.711 g cm ⁻³		TMD: 1.850 g cm ⁻³		g cm ⁻³
	exp.	calc.	calc.	exp.	calc.	calc.	exp.	calc	calc.
		at	at		at	at			at
ρ_{exp} . (g cm ⁻³) (Δ)	1.52	1.52	TMD	1.63	1.63	TMD	1.72	1.72	TMD
Vd(exp.) (m s ⁻¹)	7400	7189	7664	7600	7688	8039	7400	7356	8020
Pcj (GPa)		17.62	21.07		21.30	24.25		18.23	22.95
Tcj (K)		2827	2797		2819	2790		2445	2438
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$		-4.95	-5.49		-5.46	-5.86		-4.35	-4.91

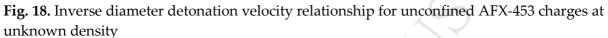

AFX-453 has been developed at Eglin Air Force Base as melt-castable blast explosive in the 1980s for use with the Mk82 bombs [82]. AFX-453 is a modification of composition III given above in Table 18. There are two slightly different formulations reported in the literature (Table 26 and 27). AFX-453 has been reported to melt at 103 °C which demonstrates the beneficial effect of NGu on the binary eutectic system AN/MeNGu. The reported performance of AFX-453 is for an unknown density. Fig. 18 shows the variation of V_D with charge diameter of unconfined AFX-453.

Table 26Compo	sition of AF			
Component	CAS-no	a) 82,83	b) 84	
TMD (g cm ⁻³)		1.813	1.826	
NGu (HBD) (wt%)	556-88-7	60.0	61.44	
Aluminium (wt%)	7429-90-5	15.0	15.00	
Methylnitroguanidine (wt%)	4245-76-5	13.0	11.70	
Ammonium nitrate (wt%)	6484-52-2	11.5	10.19	
Sodium nitrate (wt%)	7631-99-4	-	1.17	
TDO (wt%)	61791-53-5	0.5	0.50	

Table 27	Performance of AFX-453 [82-84]						
	AFX-453						
	TN	AD: 1.813g	cm ⁻³				
		a	b				
	exp.	calc. at	calc. at				
$\rho_{exp.}$ (g cm ⁻³) (Δ)	??	TMD	TMD				
VD(exp.) (m s ⁻¹)	7600*	8027	8074				
Ø _{cr} (mm)	69>x<77						
Pcj (GPa)		23.45	23.72				
Тсј (К)		2527	2523				
√2EG 19-26 mm (m s-1)	2600						
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$		-5.19	-5.20				

*) with a 177 mm diameter confined charge

3.3.1.4.4. NGu-AN-MeNGu

Yet another eutectic melting at 104 °C named DEMN is formed by the quaternary composition given in Table 28 [85].

Table 28Composition DE	Composition DEMN and IMX-103 [86]					
Component	CAS-no	DEMN	IMX-103			
TMD (g cm ⁻³)		1.571	1.666			
NGu (HBD) (wt%)	556-88-7	6.3	48.15			
MeNGu (wt%)	4245-76-5	25.4	12.70			
EDDN (wt-%)	20829-66-7	33.4	16.70			
Diethylenetriammonium trinitrate (wt%)	6143-55-1	34.9	17.45			
RDX (wt%)			5.00			

While the density of DEMN is too low to qualify for any application its mixtures with other high explosives such as additional NGu and RDX has been qualified as IMX-103(Table 29) [63].

Table 29	Performance of DEMN and IMX-103 [85, 63]						
Y	TN	TMD: 1.571 g cm ⁻³			ID: 1.666 g	cm ⁻³	
ρ _{exp} . (g cm ⁻³) (Δ)	exp. 1.53	calc. at 1.53	calc. at TMD	exp. 1.61	calc. at 1.61	calc. at TMD	
$V_{D}(exp.) (m s^{-1})$		7020	7181	7500	7511	7741	
Ø _{cr} (mm)	> 75						
Pcj (GPa)		17.44	18.61		20.58	22.51	
Tcj (K)		2836	2826		2894	2876	
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$		-5.08	-5.28		-5.53	-5.82	

3.3.1.4.5. NGu-CE-ECE

Tetryl and ethyltetryl in a mass ratio 70/30 form a eutectic melting at 85 – 88 °C [59]. This eutectic has been proposed as melt cast base for NGu by *Schlüter* and *Hermann* (Table 30 and 31) [86]

Table 30	Composition NGu-Tetryl-Tetryl-				
Component	CAS-no				
TMD (g cm ⁻³)		1.763			
NGu (HBD) (wt%)	556-88-7	90			
Tetranitromethylaniline	e(wt%) 479-45-8	7			
Tetranitroethylaniline (wt%) 6052-13-7	3			

Table 31	Performanc	e of NGu-	Fetryl-Tetryl-E	[86]
	Т	g cm ⁻³		
		а	b	
	exp.	calc. at	calc. at	
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.709	1.709	TMD	
V _D (exp.) (m s ⁻¹)	8400	8009	8232	
Ø _{cr} (mm)	<< 32			$\overline{}$
Pcj (GPa)		24.48	26.65	
Tcj (K)		2927	2905	
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$		-5.99	-6.27	
*		1 1		

*) with a 177 mm diameter confined charge

3.3.2. Cure-Castable Formulations

Due to the low shock sensitivity of NGu, both hexogen and octogen have been applied as sensitizer in binary and ternary formulations with aluminium. Table 32 depicts the formulations while the performance is displayed in Table 33.

Designation	AFX760 CPX305 [87]	AFX770 [88]	AFX900 [89]	KS71 [90]	MBB1 [91]	AFX920 [84]	AFX930 [92]	MBB1 [91]	B-2244 [93, 94]	HX-76 [95]	HX-310 [95]	ATEX [96, 97]
TMD	1.654	1.631	1.803		1.639	1.584	1.614	1.639	1.540	1.557	1.581	1.492
NGu (wt%)	35	12	17	Х	15	33(HBD)	37	15	69	55	10	60
RDX (wt%)	30	27	22	Х	55	22 (19 % 4μm, 3 % 1 μm)	32	55	15	30		20
HMX (wt%)						1 /					47	
NTO (wt%)											25	
EDD (wt%)						15)				
Al (wt%)	20	16	45		15	14	15	15				
HTPB (wt%)	15	18	16	Х	15	16	16	15	16	15	18	20
AP (wt%)		27										
				A C								

Table 32 Composition of various NGu-nitramine formulations

Designation	CI	AFX-760 2X-305 [8 = 1.654	87]		FX-770 [8 TMD = 631 g cn	-	AFX-900 [89] TMD = 1.803 gcm ⁻³	TN	X-920 AD = 5 g cm ⁻³	TN	930 [92] 4D = 4 g cm ⁻³	1	MBB-1 TMD .639 g c	_
	exp.	calc	calc	exp.	calc.	calc	calc. at	exp. at	calc. at	exp. at	calc. at	exp.	calc.	calc.
		at.	at		at	at							at	at
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.65	1.65	TMD	1.618	1.618	TMD	TMD	?	TMD	?	TMD	1.50	1.50	TMD
Vd(exp.) (m s ⁻¹)	7000	7262	7282	6050	6705	6756	7353		7078	6700	7204	6592	6508	7081
Ø _{cr} (mm)	42-47			38*										
Pcj (GPa)		18.43	18.56		16.57	16.90	17.45	$\boldsymbol{\wedge}$	17.29		18.25		14.91	18.58
Tcj (K)		2224	3334		3559	3557	3057		3089		3234		3618	3601
$\sqrt{2E_{\rm G}}$ 19-26 mm (m s ⁻¹)								2180				2670		
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$		-5.63	-5.65		-5.71	-5.77	-4.25		-5.22		-5.52		-5.33	-6.07
*confined														

Table 33a Performance of various NGu-nitramine formulations

 Table 33b
 Performance of various NGu-nitramine formulations

Designation	KS71	Н	IX-76 [95]	Æ	[X-310 [9	95]	B-2244 [93, 94]	ATEX [96	,97]
	[90]	TMD	= 1.557 g cm ⁻³	TMD) = 1.581	g cm-3	TMD=	TMD = 1.492	g cm ⁻³
	TMD=?				Y		1.540		
	exp.	exp	calc. at	exp.	calc	calc.	calc. at	exp.	calc. at
						at.			
$\rho_{\text{exp.}}$ (g cm ⁻³) (Δ)	1.48	?	TMD	1.57	1.57	TMD	1.53	?	TMD
V _D (exp.) (m s ⁻¹)	6800	7420	7225	7750	6849	6888	7200	7350	7015
Ø _{cr} (mm)		40		<10				< 28 (confined)	
								< 110 unconfined	
Pcj (GPa)			18.71		17.84	18.15	17.82		16.55
Tcj (K)			2898		3225	3222	2663		2645
$\sqrt{2E_{\rm G}}$ 19-26 mm (m s ⁻¹)									
$E(V/V_0 = 9.0)$ (kJ cm ⁻³)			-5.25		-5.42	-5.48	-4.82		-4.61

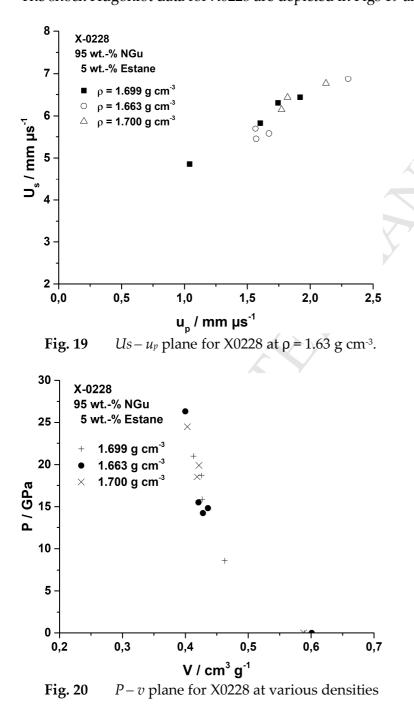
3.3.3. Pressable Formulations

Several pressable formulations containing either NGu as the sole explosive component (AFX-902, X0228)[98-100] or in binary formulations with HMX (X0118, X0183) [102] as an additional explosive filler have been reported. These formulations are compared with formulations based entirely on 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) (PBX9502), 1,1-diamino-2,2-dinitroethylene (FOX-7)(QRX080)[101] and octogen (HMX)(LX-14) (Table 34).

Designation	AFX-902	X0228	X0118	X0183	PBX9502	QRX080	LX-14
			[78]	[78]	[98, 99]	[101]	[59]
TMD			1.760	1.876			1.854
NGu (wt%)	95	95	64.9	26.4			
HMX (wt%)			29.7	65.7			95.5
TATB(wt%)					95		
FOX-7(wt%)						95	
Kel-F®(wt%)				7.9	5		
Viton® A(wt%)	5						
Hytemp®(wt%)						5	
Estane ®(wt%)		5	5.4				4.5
* melt cast formu	lation after	Ref. []		7			

Table 34 Composition of various NGu-nitramine formulations

		AFX-902 [98 MD:1.774 g	-		X0228[4c,1(1D: 1.7268 ۽			BX-9502 [98 MD: 1.941 g		Т	QRX080 [1 MD: 1.844	
	exp.	calc. at	calc. at	exp.	calc. at.	calc. at	exp.	calc. at.	calc. at	exp.	calc. at.	calc. at
ρ (g cm ⁻³)	1.742	1.742	TMD	1.704	1.704	TMD	1.894	1.894	TMD	1.76	1.76	TMD
V _D (ms ⁻¹)	8344	8067	8201	8280	7903	8000	7589	7775	7928	8230	8149	8468
Pcj (GPa)	29.0	24.9	26.1	26.8	23.4	24.3	28.5	27.3	29.3	29.8	27.2	30.8
Т сј (К)	-	2720	2706	-	2690	2682		3195	3178	-	3445	3409
Ø _{cr} (mm)	< 12	-	-	?			>9	-	-	?	-	-
$\sqrt{2E_G}$ 19 -26 mm (m s ⁻¹)	2435	-	-				2411			2644		
$E(V/V_0 = 9.0)$ (kJ cm ⁻³)	-	-5.82	-5.96		-5.57	-5.68	-	-6.66	-6.92	-	-6.99	-7.53
k (W m ⁻¹ K ⁻¹)				0.453#)			0.553%)					
c _P (J g ⁻¹ K ⁻¹)				1.328*)		N	1.133\$)					


Table 35aComparison of NGu based Explosives AFX-902 and X0228 with PBX9502 (TATB) and QRX080 (FOX-7).

#)at $\rho = 1.694$ g cm⁻³ *)at 37 °C and $\rho = 1.686$ g cm⁻³, \$) at $\rho = 1.9$ g cm⁻³ and 37 °C; %)at $\rho = 1.893$ g cm⁻³

Table 35bComparison of NGu based Explosives AFX-902 and X0228 with PBX9502 (TATB) and QRX080 (FOX-7).

		X0118 [10	2]		X0183 [102	2]		LX-14 [59]	
	Т	MD: 1.760 g	g cm ⁻³	T	MD: 1.876 g	cm ⁻³	T	MD: 1.854 g	cm ⁻³
	exp.	calc. at	calc. at	exp.	calc. at.	calc. at	exp.	calc. at.	calc. at
ρ (g cm ⁻³)	1.712	1.712	TMD	1.815	1.815	TMD	1.823	1.823	TMD
VD (ms-1)	8380	8004	8195	8625	8463	8695	8800	8764	8875
Pcj (GPa)	30.1	25.07	27.02	34.6	30.30	32.98	37.4	33.96	35.43
Т сј (К)		3099	3080		3651	3618		4003	3985
Ø _{cr} (mm)									
$\sqrt{2E_G}$ 19 -26 mm (m s ⁻¹)							2970		
$E(V/V_0 = 9.0)$ (kJ cm ⁻³)		-6.35	-6.62		-7.98	-8.38		-8.81	-9.04
k (W m ⁻¹ K ⁻¹)									
c _p (J g ⁻¹ K ⁻¹)									

Fried & Souers describe and rank AFX-902 as an "ideal explosive" comparable to LX-14 [121]. This is not surprising as the detonation pressure, Gurney energy and detonation velocity of AFX-902 reach 77.5 %, 82.0 % and 94.8 % respectively of LX-14. Though both TATB and FOX-7 possess higher densities than NGu (+10; +8 %) and have both higher detonation enthalpies than NGu (+13; +25 %) the detonation velocity of AFX-902 is equivalent if not superior to both PBX-9502 and QRX080. The detonation pressure of AFX-902 is comparable to PBX-9502 and just 94 % of QRX080. The Gurney Energy of AFX-902 is about the same as for PBX9502 and just 92 % that of QRX080. The critical diameter for both AFX-902 and PBX-9502 appears to be in the same range. No data on FOX-7 based critical diameter is available. The shock Hugoniot data for X0228 are depicted in Figs 19 and 20.

3.3.3.1. Miscellaneous formulations

Gogyula et al. have reported about pressable binary formulations of NGu and Al in a mass ratio (85/15) [27, 44]. Table 36 depicts the performance of various formulations containing different type aluminium powder against HMX/Al formulations as comparison.

Table 36	Performa	nce of NC	Gu-Al and	HMX-Al (85,	/15) as refere	ence
	Calc.	Al ø	Al ø	Al fl	HMX/A1	Calc
	NGu/Al	15 µm	100 nm	1 x 20 x 50	100 nm	HMX/A1
				μm		
						TMD
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.785	1.743	1.785	1.720	1.84	1.84
VD(exp.) (m s-1)	8319	7940	7780	8130	8030	8457
Ø _{cr} (mm)		<< 40	<< 40	<< 40		
Pcj (GPa)	25.58	26.0	27.5	26.5	30.0	30.05
Tcj (K)	3227	-	2550	2362	3350	4466
$E(V/V_0 = 9.0) (kJ \text{ cm}^{-3})$	-6.51					-8.74
v _w (m s ⁻¹)	1882	1820	1840	1850	2180	2094
				1		

Heat resistant explosive formulations based on NGu having high specific surface area (9000 – 16000 cm² g⁻¹) are the subject of a formerly classified Soviet Union patent released 46 years after its submission (Table 37) [103].

Table 37	Composition, experime	ental and calculated performance of NG	u-
nitramine explosive	formulations [103]		

	RDX/NG	fu	HMX/NG	Ju	HMX/NC	Su
	80/20		80/20		40/60	
TMD	1.799		1.876		1.822	
$\rho_{exp.}$ (g cm ⁻³) (Δ)	1.72	1.72	1.770	1.770	1.705	1.705
VD(exp.) (m s ⁻¹)	8200	8527	8500	8714	8100	8262
Øcr (mm)						
Pcj (GPa)		29.75		31.82		26.67
Тсј (К)		3951		3914		3364
$E(V/V_0 = 9.0)$ (kJ		-7.98		-8.30		-6.85
cm-3)						

4 Sensitiveness

4.1. Friction and Impact Sensitivity

NGu and the formulations based on it are mostly not very friction or impact sensitive, however, more sensitive components may trigger sensitivity as indicated below in Table 38.

Test method	Nigutol 60/40 [104]	IMX-101 [63]	ATEX [96,97]	AFX-453 [82,83]	AFX-770 [88]	NGu -Tetryl- Tetryl-E [81]
BAM- Impact (J)	22.5					15
Rotter		>100			60 - 70	
ERL(cm)		100	>320	> 200		
BAM-Friction (N)	-	240-252		>355	96	
250 lbf 8 ft s ⁻¹			no fire			

Table 3850 %-Friction, Impact, values of selected formulations.

4.2. Shock Sensitivity

Nitroguanidine and the formulations based thereon are very insensitive to shock. Hence and due to the comparatively large critical diameter shock sensitivity of NGu-based formulations are typically assessed with NOL-LSGT [28], the ELSGT [105] and the SLSGT [106].

4.2.1. Critical energy

Shock initiation of a high explosive occurs when its unit surface area is subjected by a specific minimum energy while shock pressure, p, and shock duration, t, may vary. The energy fluence, E_{crit} , (J cm⁻²) in a specific volume is therefore a characteristic figure to describe the sensitivity of an energetic material towards shock initiation [107].

$$E_{crit} = p \cdot u \cdot t$$

Lungenstraß has determined *E*_{crit} for NGu and formulations based thereon as well as reference high explosives (see Table 39) [55].

Table 39 Critical	Initiation	energy for high exp.	losives
High Explosive	Density	Impact Sensitivity	Ecrit
	(g cm ⁻³)	(J)	(J cm ⁻²)
TATB (pressed)	1.80	> 50	~ 500
TNT (cast)	1.59	15	320
Comp B (cast)	1.73	7.5	185
NGu (SHBD)	1.57	50	~ 455
Nigutol-60 (cast)	1.68	22.5	~ 390
Nigutol-92 (pressed*)	1.70		~ 525

Table 39Critical Initiation energy for high explosives

*) and infiltrated after pressing at 90 °C with liquid TNT to fill the residual porosity.

For the hot-spot model *Mader* calculated adiabatic explosion times for shock initiation of high explosives with spherical holes [108, 109]. Table 40 displays the variation of explosion time for different explosives and different temperatures (correlating with different shock sensitivity). Fig. 21 shows the influence of spot size and shock pressure on the initiation of NGu, TATB and HMX.

Explosive		Hot-Spo	t Temp	era	ture
			(K)		
	700		1000		1300
NGu	5504.00 μs	12	$4 \ \mu s$		18.47 µs
TATB	1290.00 µs	6.2	10 ⁻³ µs		1·10⁻⁵ µs
HMX	5.26 µs	1.1	10-4 µs		5·10⁻ µs
PETN	0.08 µs	7.1	10-6 µs		5·10-8 µs
_					
-					
IJ	A				
Shcok Pressure / GPa	Δ				
ing -	•	۵			
ess	۵			•	NGu, Go
Pr.					NGu, No-Go TATB, Go
Š					TATB, No-Go
hc				•	HMX, Go
s l					HMX-No-Go
1 ↓ 1E-3	0,01	0,1		יייי 1	10

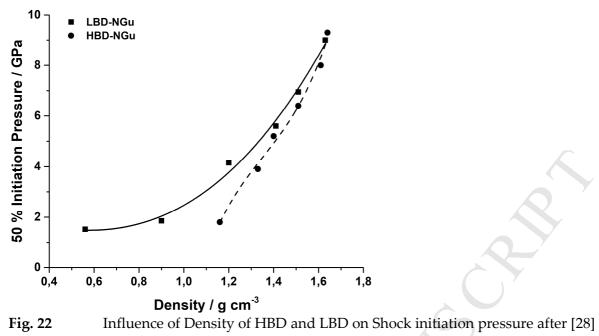

Table 40Adiabatic explosion times for different explosives after Ref. [108, 109]

Fig. 21 Influence of Pore size and shock pressure on Initiation of NGu and other high explosives after Ref. [108, 109]

Pore size / mm³

4.2.2. LSGT

The influence of charge density on the shock initiation pressure of both LBD and HBD-NGu in LSGT is depicted in Fig. 22 [28]. It reflects the common observation that porosity is a prerequisite for successful shock ignition.

LSGT-data on NGu-based for	ormulations and referen	ce materials are	displayed in Table 41
			1 2

Formulation	Density	comments	Go	Ref.
	(g cm ⁻³)		(GPa)	
NGu (neat)	1.64	?	9.00	[28]
NGu	1.59		7.31	[110]
NGu/Wax (95/5)	1.55		9.93	[110]
IMX-101	1.70		9.16	[111]
IMX-103	1.61		7.9	[63]
AFX-930	1.61		7.12	[106]
QRX080	?		4.64	[112]
Сотр В	1.71	<i>Y</i>	2.59	[59]
ТАТВ	1.802		6.58	[59]
TNT	1.61	Cast	4.58	[59]
GUDN	1.66	Pressed	6.25	[39]
Guntol-50	1.652	cast	6.20	[39, 132]

Table 41 LSGT data for NGu, its formulations and *reference compositions*.

4.2.3. ELSGT

ELSGT data are displayed and compared in Table 42.

Density	NGu-type	Particle Sizes	Go/No-Go	Ref.
(g cm ⁻³)		(µm)	(GPa)	
1.663	HBD	NGu 105-210	3.44 - 3.32	[52,53]
1.643		NGu 297-420	3.73 – 3.59	[52,53]
1.638	SHBD	NGu 105-210	>4.21	[52,53]
1.636		NGu 297-410	3.28 - 3.15	[52,53]
1.59	HBD	NGu 210-297	3.89 – 3.75	[52,53]
1.61	SHBD	NGu 210-297	3.89 – 3.75	[52,53]
1.65	?	?	3.12 - 3.00	[87]
	?	RDX 2µm, type 1	5.51	[88]
		6 µm type 1	5.63	[88]
		20 µm type 1	4.27	[88]
		20 µm type 2	4.63	[88]
	SHBD	?	3,85 – 3,61	[95]
	?	?	2.65 - 2.54	[95]
1.65	?	?	5.9	[113]
1.61	HBD		12.21	[105]
1.63	LBD		12.89	[105]
1.64	HBD		13.06	[105]
1.62	cast		9.25	[59]
1.660			1.65	[59]
1.83			10.61	[59]
	Density (g cm ⁻³) 1.663 1.643 1.638 1.636 1.59 1.61 1.65 1.61 1.65 1.61 1.63 1.64 1.62 1.660	Density NGu-type (g cm ⁻³) HBD 1.663 HBD 1.643 SHBD 1.636 HBD 1.636 SHBD 1.636 ? 1.61 SHBD 1.65 ? 1.65 ? 1.65 SHBD 1.65 RBD 1.65 SHBD 1.65 SHBD 1.65 RBD 1.64 HBD 1.62 cast 1.660 HE	(g cm 3)(µm)1.663HBDNGu 105-2101.643NGu 297-4201.638SHBDNGu 105-2101.636NGu 297-4101.59HBDNGu 210-2971.61SHBDNGu 210-2971.65???RDX 2µm, type 1 $6 µm type 1$ $20 µm type 1$ $20 µm type 1$ $20 µm type 2$ SHBD?1.65?1.65?1.65?1.65?1.61HBD1.62cast1.60	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 42 ELSGT data for NGu, its formulations and *reference compositions*.

4.2.4. SLSGT

Data for the SLSGT have been reported in Ref. [65] and are compared with TNT and PBXN-109 (Table 43).

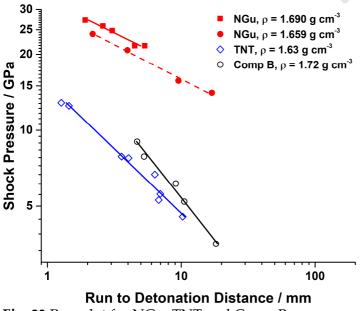
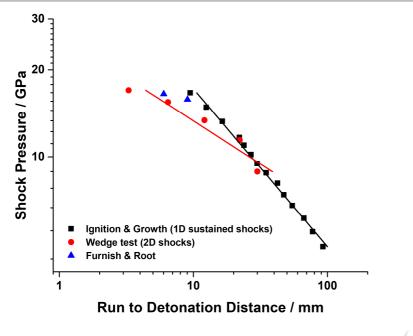
Table 43	SLSGT data for ALIMX-101 and two reference materials				
Formulation	Density	Go/No-Go			
	(g cm ⁻³)	GPa			
ALIMX-101	1.81	5.87 - 5.49			
TNT	1.58	0.75 - 0.64			
PBXN-109	1.660	1.31			

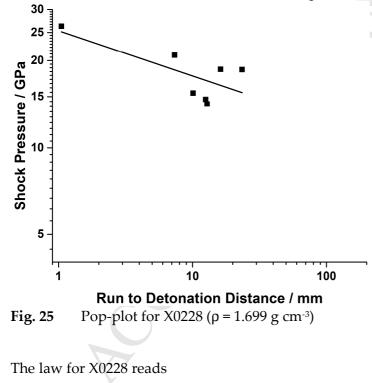
4.2.5. BICT Gap test

Results of the BICT Gap test [114, 115] on pressed Nigutol-40 (having an unusual high porosity!)[54] and Guntol [60] have been published. However, both Nigutol and Guntol have critical diameters in the same ballpark as the test configuration ($\emptyset \sim 24$ mm) which is why these data are of questionable quality and hence will not be discussed here.

4.2.6. Run-to-detonation distance for Shock to-Detonation Transition (SDT)

The run-to-detonation distance for neat NGu has been determined by *Popolato et al.* [116] and is depicted in Fig. 23.


Fig. 23 Pop-plot for NGu, TNT and Comp B

The run-to-detonation distance for IMX-101 has been tested with different methods and is depicted in Fig. 24 for a charge density of $\rho = 1.56$ g cm⁻³ [117].

Fig. 24 Pop-plot for IMX-101 (ρ = 1.56 g cm⁻³)

The run-to- detonation distance of X0228 is depicted below in Fig. 25

$$Log(p)=1.42 - 0.19 log(x)$$

4.3.Projectile Impact

Lee has calculated the critical projectile impact velocity versus projectile diameter relationship for bare X0228 from pop plot data. The results and comparative data for more sensitive high explosives Comp B and TNT are depicted in Fig. 26 [118, 119]. Though "initiations" for both X0228 and TNT can be expected in the full range of projectile

diameters it must be remembered that stable detonations will probably only develop when the projectile diameter is in the same range as the critical diameter of the corresponding explosive which is about 15-20 mm for both X0228 and TNT.

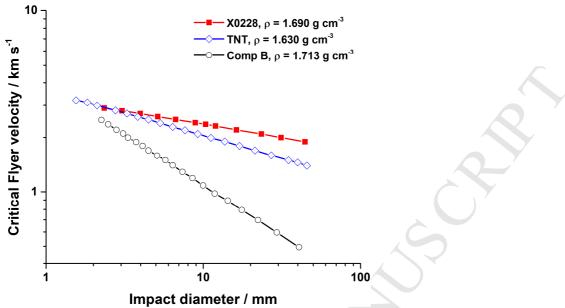


Fig. 26 Critical flyer velocity for bare X0228 compared to TNT and Comp B

5 Insensitive Munitions Tests of NGu based formulations

Insensitive Munitions Tests as defined in AOP-39 serve the evaluation of the response of a particular store or a test vehicle towards threats typically encountered in the life cycle of an ammunition [6]. Table 44 displays those tests and the underlying scenario and the desired response of an article to be considered insensitive.

Pass-Requirement	Definition	Scenario
No response more	Average temperature between	Magazine/store fire or
severe than type V	550 °C and 850 °C until all	aircraft/ vehicle fuel fire
(burning)	munitions reactions completed.	
	550 °C reached within 30 s from	
	ignition	
No response more	Between 1 °C and 30 °C per hour	Fire in an adjacent
severe than type V	heating rate from ambient	magazine, store or vehicle
(burning)	temperature	
No response more	From one to three 12.7 mm	Small arms attack
severe than type V	(armour piercing) round velocity	
(burning)	between 400 – 850 m s ⁻¹	
No response more	Steel fragment from 15 g with	Fragmenting munitions
severe than type V	velocity up to 2600 m s ⁻¹ and 65 g	attack
(burning)	with velocity up to 2200 m s ⁻¹	
No propagation of	Detonation of donor in	Most severe reaction of
reaction more severe	appropriate configuration	same ammunition in
than type III		magazine, store aircraft or
	No response more severe than type V (burning) No propagation of reaction more severe	No response more severe than type V (burning)Average temperature between 550 °C and 850 °C until all munitions reactions completed. 550 °C reached within 30 s from ignitionNo response more severe than type V (burning)Between 1 °C and 30 °C per hour heating rate from ambient temperatureNo response more severe than type V (burning)From one to three 12.7 mm (armour piercing) round velocity between 400 – 850 m s ⁻¹ No response more severe than type V (burning)Steel fragment from 15 g with velocity up to 2600 m s ⁻¹ and 65 g (burning)No response more severe than type VSteel fragment from 15 g with velocity up to 2200 m s ⁻¹ No propagation of reaction more severeDetonation of donor in appropriate configuration

Table 44Threat, definition and Minimum pass-requirement [120]

	(explosion)		ve
Shaped charge	No response more	Shaped charge calibre up to 85	Sł
Jet impact	severe than type III	mm	at
SJC	(explosion)		

vehicle Shaped charge weapon attack

The corresponding responses are depicted in Table 45. The IM signature colour code requires green if the response is met, yellow if the response is not more than one type higher, red if the response is more than one type higher and white if a test has not been conducted.

Table 45 Response descriptors for IM Tests i.a.w. STANAG 4439 [120]

Reaction type	Designation
Ι	Detonation
II	Partial detonation
III	Explosion
IV	Deflagration
V	Burn
VI or NR	No sustained reaction

The IMX-101, AFX-770 and AFX-900 have been tested in full scale ammunitions (Table 46 and 47) and are compared against baseline vulnerable high explosive and blast formulations Comp B, TNT and H-6.

	11-1651	Signatu	16 101	1551		unery .
Configuration	FCO	SCO	BI	FI	SR	SCJ
IMX-101	V	V	IV	V	NR	III
M795 Shell						
Guntol-45						III
Сотр В	III	III	Ш		Ι	Ι
M107 Shell						
TNT	III	III	IV		Ι	Ι
M795 shell				Y		

Table 46IM-Test Signature for 155 mm Artillery Shell [122]

Table 47IM-Test Signature for GP-bomb

Configuration	FCO	SCO	BI	FI	SR	SCJ
AFX-770			V		NR	
Mk82						
AFX-900					NR	
Mk82						
	Y					
H-6	Ι	Ι	Ι	Ι	Ι	
Mk82						

6 EI(D)S – Extremely Insensitive (Detonable) Substances

Explosives that pass the full-scale UN-Test series 7 for formulations 7(a)-7(f) and the article 7(g)-7(k) are designated Extremely Insensitive (Detonating) Substances EIS (formerly EIDS). The corresponding articles (munitions containing those explosives) then are categorized as Hazard Division 1.6 [123]. Qualified EIS containing NGu are the aforementioned formulations AFX-760, AFX-770, AFX-920, and AFX-930 [124].

7 Summary

Swiss chemist *Alfred Stettbacher* – considered an authority in the field of explosives in his time – in 1936 tried to detonate 2.5 g Nitroguanidine stemmed in a rifle (8x57) cartridge with a common (lead azide, mercury fulminate, PETN) cap on a mild steel plate. His test resulted in only a small dent in the steel plate. *Stettbacher* with his experimental setup simply overlooked the low shock sensitivity of NGu and the large critical diameter of it. However, this one single failed experiment led him to drew an ill conclusion "(...). *Zufolge seiner beträchtlichen Sauerstoffunterbilanz von* 30,75 % *bei gleichzeitg* 53,85 % *Stickstoffgehalt ist dieser Nitrokörper kein Sprengstoff. Seine Wirkung ist selbst bei kräftiger Zündung gering.* (...)" which translates into "(...)Due to its considerable oxygen deficiency of 30.75 % (sic!) combined with a high nitrogen content of 53.85 % this nitro compound is **no high explosive. Its performance** even with fiercest initiation **is feable** (...). [125].

In a popular review on insensitive high explosives in 1997 it was <u>erroneously stated</u> "*NGu* (...) *does not meet the criterion of at least 75 % HMX performance in detonation pressure and cylinder wall energy* (...). [126]. The authors of said review must have picked wrong numbers from the literature. In addition, they overlooked the then recent work by *Fried & Souers* (1996) – the developers of Cheetah –which assessed AFX-902 (95 wt-% NGu) to perform like an ideal high explosive with the detonation pressure, Gurney energy and detonation velocity of it reaching 77.5 %, 82.0 % and 94.8 % respectively of LX-14 based on 95 % HMX [121].

In summary highly dense nitroguanidine clearly outperforms *N*-guanylurea dinitramide (GuDN or FOX-12) and 1,3,5-triamino-2,4,6-trinitroethylene (TATB) with regards to Gurney Energy, detonation pressure and velocity (See table 48) it is a close match in performance with 1,1-diamino-2,2-dinitroethylene (FOX-7)(8) with which it is structurally related [1] and reaches even up to HMX delivering up to 78 % detonation pressure, 82 % Gurney Energy and 95 % detonation velocity.

On top NGu and its formulations are the least sensitive dealt with regards to shock sensitivity. Table 48 displays a synoptic ranking of NGu experimental performance with FOX-12, TATB, NGu, FOX-7 and HMX and percentage of NGu performance. Green is NGu baseline performance, yellow is inferior and blue is superior.

	FOX-12		TATB		NGu	FOX-7		HMX	
TMD (g cm ⁻³)	1.76		1.935		1.77	1.934		1.906	
ρ exp (g cm ⁻³)	1.666		1.894		1.742	1.76		1.823	
V _D (m s ⁻¹)	7870	94.3	7589	91.0	8344	8230	98.6	8800	105.5
		%		%					%
Pcj (GPa)	26.11	90.0	28.5	98.3	29.0	29.8	102.8	37.4	129.0
		%		%			%		%
Ø cr (mm)	20><52		<9		<12	?) '	
2√E _G (m s ⁻¹)	2374	97.4	2411	99.0	2435	2644	108.6	2970	122.0
		%		%			%		%

Table 48 Performance Synopsis NGu -FOX-1-FOX-7-TATB-HMX

8 Outlook

While costly spherical high bulk density (SHBD-) NGu has been used in the past to achieve dense charges this review shows that dense charges can be obtained too by dissolving common LBD-NGu in molten energetic ionic liquids (see § 3.3.1.4). In view of the immense current international interest and research efforts in the field of new energetic ionic liquids for melt cast applications [127-131] and given the availability, good performance and extreme low sensitiveness of nitroguanidine, NGu is a natural candidate for future highly dense, high performance low sensitivity melt cast formulations.

9 Acknowledgement

The author is grateful for the support and help by the following individuals:

- Professor Dr. Muhamed Suceska, University of Zagreb, Croatia, for helpful discussions.
- Mr. Bruno Nouguez, France, for information formulation B2244.
- Dr. Werner Arnold, Ingolstadt, Germany for proofreading an early version of this paper,
- Dr. Phil Samuels, USA, for information on IMX-101.

The author gratefully acknowledges *AlzChem Trostberg GmbH*, Trostberg, Germany for funding this work.

10 List of abbreviations

$\sqrt{2E_G}$	Gurney Energy, m s ⁻¹
Øcr	critical diameter, mm
ρ	density, g cm ⁻³
$\Delta_{\rm f} H$	enthalpy of formation, kJ mol ⁻¹
$\Delta_{\rm det} H$	enthalpy of detonation, kJ mol ⁻¹
$\Delta_{\mathrm{vap}}H$	enthalpy of vaporization, kJ mol ⁻¹
μ dp	particle diameter, µm
ξ	mass fraction, wt%
Ω	Oxygen balance, wt%

AN	Ammonium nitrate, NH4NO3
AOP	NATO-Allied Ordnance Publication
BI	Bullet Impact
CAS	Chemical Abstracts Service
CE	Tetryl, C7H5N5O8
dp	decomposition point, °C
EI(D)S	Extremely Insensitive (Detonating) Substance
ELSGT	Extra Large Scale Gap Test
FCO	Fast Cook Off

FI	Fragment Impact
FOX-7	1,1-Diamino-2,2-dinitroethylene, C ₂ H ₄ N ₄ O ₄
FOX-12	GUDN
GP	General Purpose
GUDN	N-Guanylurea dinitramide, C2H7N7O5
HBD	high bulk density
HE	high explosive
HMX	Octogen, C4H8N8O8
IM	Insensitive Munitions
IMX	Insensitive Melt cast Explosive
LBD	low bulk density
LSGT	Large Scale Gap Test
LVD	low velocity detonation
Mk	Mark
mp	melting point, °C
mr	molecular weight, g mol-1
NATO	North Atlantic Treaty Organization
NGu	Nitroguanidine, CH4N4O2
NOL	Naval Ordnance Laboratory
NTO	3-Nitro-1,2,4-triazolone, C ₂ H ₂ N ₄ O ₃
Р	Pressure, GPa
Рсј	Chapman Jouguet pressure, GPa
PETN	Pentaerythritol tetranitrate, C5H8N4O12
RDX	Hexogen, C ₃ H ₆ N ₆ O ₆
SCJ	Shaped Charge Jet Impact
SCO	Slow Cook Off
SR	Sympathetic Reaction
SHBD	Spherical High Bulk Density
SLSGT	Super Large Scale Gap Test
STANAG	NATO-Standardization Agreement
TATB	1,3,5-Triamino-2,4,6-trinitrobenzene, C6H6N6O6
Тсј	Chapman Jouguet temperature, K
TDO	N-Tallow-1,3-diaminopropane dioleate, CAS-No. [61791-53-5]
TMD	Theoretical maximum density, g cm-3
TNT	2,4,6-Trinitrotoluene, C7H5N3O6
$U_{\rm s}$	shock velocity, m s-1
up	particle velocity, m s-1
υ	specific volume, cm3 g ⁻¹
VD	detonation velocity, m s-1
V/V ₀ =9.0	Cylinder Energy at expansion ration 1:9, kJ cm-3

11 References

- [1] Koch, E.-C. (2019), Insensitive High Explosives III: Nitroguanidine–Synthesis–Structure– Sensitiveness, *Propellants Explos. Pyrotech.* 44, 205-???
- [2] Koch, E.-C. (2018), Nitroguanidine (NQ) An Underestimated Insensitive Energetic Material for High Explosives and Propellants, 49th Annual Conference of ICT, 2018, Karlsruhe, Germany, V-3.
- [3] Fedoroff, B. T., Sheffield, O. E. (Eds.)(1969-1974) *Encyclopedia of Explosives and Related Items*, Picatinny Arsenal, a) *Volume 6*, G-154; b) *Volume 4*, D-381.
- [4] Gibbs, T. R., Popolato, A.(1980) *LASL Explosive Property Data*, University of California Press, Berkeley, a)p. 60; b)p. 304-308; c) 250–254–456.eé
- [5] Anderson, E., *Explosives*, in Carleone, J. (Ed.) *Tactical Missile Warheads*, *Volume 155 Progress in Astronautics and Aeronautics*, AIAA, Washington, **1993**, p. 123; 126.
- [6] N.N. (2010), Guidance on the Assessment and development of insensitive munitions (IM) - AOP-39, 3rd Edition, NATO Standardization Agency, Brussels, Belgium, 17 March 2010, 143 pp.
- [7] Schmidt, A. (1934), Thermochemische Tabellen für die Explosivchemie, Z. Gesamte Schiess.- Sprengstoffwes., 29, 259-266.
- [8] Stegeman, G. (1945), Heat of Combustion of Explosive Substances, *Report OSRD No.* 5306, National Defence Research Committee of the Scientific Research and Development, July 4 1945, 11 pp.
- [9] Lobanov, G. A., Karmanova, L. P. (1971), Enthalpy of formation of some organic substances, *Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya*, 14, 865-867.
- [10] Krien, G. Licht, H. H., Zierath, J. (1973), Thermochemische Untersuchungen an Nitraminen, *Thermochim. Acta*, *6*, 465-472.
- [11] Dorofeeva, O. V., Tolmach, P. I. (1994), Estimation of the thermodynamic properties of nitroguanidine, hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetrazocine in the gas phase, *Thermochim. Acta*, 240, 47-66.
- [12] Osmont, A. Catoire, L. Gökalp, I, Yang, V. (2007), Ab initio quantum chemical predictions of enthalpies of formation, heat capacities and entropies of gas phase energetic compounds, *Combust. Flame*, 151, 262-273.
- [13] Cundall, R. B., Palmer, T. F., Wood, C. E. C. (1978), Vapour Pressure Measurements on Some Organic High Explosives, *J. Chem. Soc., Faraday Trans.* 1, 74, 1339-1345.
- [14] Dobratz, B. M. (1981), *LLNL Explosives Handbook*, *DE85-015961*, Lawrence Livermore National Laboratory, CA, USA.
- [15] Kamlet, M. J., Jacobs, S. J. J., (1968), Chemistry of Detonations. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Phys. Chem. 48, 10.1063/1.1667908
- [16] Kamlet, M. J., ABlard, J. E. (1968), Chemistry of Detonations. II. Buffered Equilibria, J. Phys. Chem. 48, 10.1063/1.1667930
- [17] Kamlet, M. J., Dickinson, C. (1968), Chemistry of Detonations. III. Evaluation of Simplified Calculational Method for Chapman-Jouguet Detonation Pressures on the Basis of Available Experimental Information, J. Phys. Chem. 48, 10.1063/1.1667939.

- [18] Kamlet, M. J., Hurwitz, H. (1968), Chemistry of Detonations. IV Evaluation of a Simple Predictional Method for Detonation Veocities of C-H-N-O Explosives, J. Phys. Chem. 48, 10.1063/1.1669671.
- [19] Ornellas, D. L. (1982), Calorimetric Determinations of the Heat and Products of Detonation for Explosives: October 1961 to April 1982, UCRL-52821, Lawrence Livermore National Laboratory, Livermore, CA, 5. April 1982, 87 pp.
- [20] Keshavarz, M. H., Klapötke, T. M. (2017), Energetic Compounds Methods for Prediction of their Performance, DeGruyter, Berlin, p. 11.
- [21] Cooper, P. W. (1996), Explosives Engineering, Wiley-VCH, New York, p. 131.
- [22] Gibbs, T. R. (Ed.)(1980) *LASL Explosive Property Data*, University of California Press, Berkeley, pp. 57; a) 304-308, b)
- [23] Volk, F, Bathelt, H., Schedlbauer, F. (1983), Detonation Products of TNT Based Insensitive Cast High Explosives, DEA-AF-71-F/G-7304, 9th Meeting, 2-4. November 1983, Unterlüß, 22 pp.
- [24] Volk, F, Bathelt, H., Schedlbauer, F., Wagner, J. (1985), Detonations Products of Insensitive Cast High Explosives, 8th International Detonation Symposium, Albuquerque, NM 15-19 July, 1985, pp. 577-586.
- [25] Fried, L. E., Howard, W. M. (1998), *Cheetah 2.0*, Lawrence Livermore National Laboratory, Ca, USA.
- [26] Volk, F., Schedlbauer, F. (1989), Detonations Products of Less Sensitive High Explosives Formed under Different Pressures of Argon and in Vacuum, 9th International Detonation Symposium, Portland, OR, 28. August - 1. September, 1989, pp. 962-971.
- [27] Gogyula, M. F., Makhov, M. N., Dolgoborodov, A. Y., Brazhnikov, M. A., Arkhipov, V. I., Shchetinin, V. G. (2004), Mechanical Sensitivity and Detonation Parameters of Aluminized Explosives, *Combustion Explosion Shock Waves* 40, 445-457.
- [28] Price, D., Clairmont Jr., A. R. (1968), The Response of Nitroguanidine to a Strong Shock, NOLTR 67-169, US Naval Ordnance Laboratory, White Oak, MD, 2. February 1968, 51 pp.
- [29] Price, D. Clairmont Jr., A. R. (1968), Explosive Behaviour of Nitroguanidine, 12th International Symposium on Combustion, 14-20 July 1968, Poitiers France, pp. 761-770.
- [30] Hobbs, M. L., Brundage, A. L., Yarrington, C. D. (2014), JCZS2i: An improved JCZ Database for EOS Calculations at High Temperature and Pressure, 15th International Detonation Symposium, 13-18 July, 2014, San Francisco, CA, USA, p.
- [31] Östmark, H., Helte, A., Carlsson, T. (2009), N-Guanylurea-dinitramide (FOX-12): A New Extremely Insensitive Energetic Material For Explosive Applications, 14th International Symposium on Detonation, Coeur D'Alene, USA.
- [32] Price, D. (1966), Contrasting Patterns in the Behaviour of High Explosives, 11th International Symposium on Combustion, 14-20 August 1966, Berkeley, CA, USA, pp. 693-702.
- [33] Mader, C. L. (1998), Numerical Modeling of Explosives and Propellants, 2nd Edition, CRC Press, Boca Raton, a) p. 255.; b) p. 63.
- [34] Tulis, A. J., Austing, J. L. (1976), Further Studies on the Detonation Characteristics of very low density Explosive systems, 6th International Symposium on Detonation, 24-27 August 1976, White Oak, MD, USA, 183-191.
- [35] Tulis, A. J. (1976), Sympathetic Detonation of Ammonium Perchlorate by Small Amounts of Nitroguanidine, 6th International Symposium on Detonation, 24-27 August 1976, White Oak, MD, USA, 173-182.

- [36] Leiper, G. A., Cooper, J. (1997), The Kinetics of Detonation of Nitroguanidine, *Propellants Explos. Pyrotech.* 22, 347-350.
- [37] Cooper, J., Leiper, G. A. (1998), The Kinetics of Detonation of Powder Explosives and its relation to group 1 and group 2 behaviour, 11th International Symposium on Detonation, 30 August – 4 September 1998, Snowmass at Aspen, CO, USA, 293-302.
- [38] Hobbs, M. L. Baer, M. R. (1993) Calibrating the BKW-EOS with a large Product Species Database and measured C-J- Properties, 10th International Detonation Symposium, 12.-16. July 1993, Boston, MA, p. 409-418.
- [39] Östmark, H., Helte, A., Carlsson, T. (2006), N-Guanylurea-dinitramide (FOX-12): A New Extremely Insensitive Energetic Material for Explosive Applications, 13th International Symposium on Detonation, Norfolk, USA, 121-127.
- [40] Peetes, J. (1968), Blast and Fragmentation Characteristics, Ann. NY. Acad. Sci., 125, 283-316.
- [41] Walters, W. P. (1986), Explosive Loading of Metals and Related Topics, Special Publication BRL-SP-56, US Army Ballistics Research Laboratrory, Maryland, May 1986, 139 pp.
- [42] Östmark, H. (2007), N-Guanylurea dinitramide (FOX-12): Extremely Insensitive Energetic Material for Explosives Application, Dinitramide & FOX-7 Meeting, 19-20 September 2007, Royal Hotel San Remo, Italy.
- [43] Kaye, S. M. (1983), Encyclopedia of Explosives and Related Items, Volume 10, US Army Armament Research and Development Command, Dover, NJ, USA, V-75/V-76.
- [44] Makhov, M. N., Gogyula, M. F., Dolgoborodov, A. Y., Brazhnikov, M. A., Arkhipov, V.
 I., Pepekin, V. I. (2004), Acceleration Ability and Heat of Explosive Decomosition of Aluminized Explosives, *Combustion Explosion Shock Waves*, 40, 458-466.
- [45] Montesi, L. J. (1973), The Development of a water arm-air safe Detonator,
- [46] L. J. Montesi, *The Development of a Water Arm-Air Safe (WARAS) Detonator*, NOL White Oak, MD, 42 pp.
- [47] Gurton, O. A. J. (1987), The role of Gas pockets in the Propagation of Low Velocity Detonation, 1st & 2nd Symposia on Detonation, White Oak, MD, p. 582-600.
- [48] Marsh, S. P. (1980), LASL Shock Hugoniot Data, University of California Press, Berkeley, pp. 600-607.
- [49] Fedoroff, B. T. (1958), Dictionary of Explosives, Ammunition and Weapons (German Section), Picatinny Arsenal, p. Ger-121-122.
- [50] Arribat, I. C., Fabre, I. (1946), Mission à Düneberg (Allemagne), 21-Mars-19 Avril 1946, Document N° 7, Fabrication de la Nitroguanidine – Emploi en Allemagne dans les poudres et les projectiles explosifs, 29. Octobre 1946, Poudrerie Nationale de Sevran-Livry, France, 17 pp. déclassifié par le SHD le 22.08.2018.
- [51] Greiner, N. R., Phillips, D. S., Johnson, J. D., Volk, F. (1988), Diamonds in detonation soot, Nature, 333, 440-442.
- [52] McKenney, R. L., Summers, P. G., Schomber, P. R., Whitney, S. D. (1991), Small-Scale Testing of High-Bulk Cubical and Spherical Nitroguanidine for Comparative Evaluation, *International Annual Conference of ICT*, Karlsruhe, V-2.
- [53] McKenney, R. L., Monine, A. M., Summers, P. G., Whitney, S. D. (1993), Small-Scale Testing of High-Bulk Cubical and Spherical Nitroguanidine for Comparative Evaluation August 1993 – Final Report for Period September 1988 – December 1992, Wright Laboratory, Armament Directorate, Eglin AFB, USA.

- [54] Schedlbauer, F. (1987), Sprengladungen aus TNT/NIGU mit hoher Wirkleistung, 18th International Annual Conference of ICT, Karlsruhe, Germany, V-12.
- [55] Lungenstraß, F. (1995) Untersuchungen zur Initiierung insensitiver Sprengstoffe mit der Electric Gun, Dissertation Universität .
- [56] Sjöberg, P., Östmark, H., Amnéus, A.-M. (2010), GUNTONAL- An Insensitive Melt Cast for Underwater Warheads, Insensitive Munitions & Energetic Materials Technology Symposium, October 11-14, 2010, Munich, Germany.
- [57] Schubert, H. (1986), Activities in the Field of Insensitive Munition in Germany, Workshop on IM Information Exchange, Fleetbank Home, London, 77-84.
- [58] Hornberg, H., Volk, F. (1989), The Cylinder Test in the Context of Physical Detonation Measurement Method, *Propellants Explos. Pyrotech.* 14, 199-211.
- [59] Koch, E.-C. (2019), Sprengstoffe, Treibmittel, Pyrotechnika, 2nd Ed., DeGruyter, Berlin, p. 258.
- [60] Östmark, H, Helte, A. (2010), Extremely Low Sensitivity Melt Castable Explosives Based on FOX-12, 14th International Symposium on Detonation, Coeur D'Alene, USA, 1028-1034.
- [61] Licht, H. H. (1988), Die Leistung von gießbaren IHE Formulierungen, CO 217/88, ISL Saint Louis, France, 12pp.
- [62] Amnéus, A.-M., Sjöberg, P., Östmark, H. (2009), GUNTOL A Low Cost Melt Cast for IM, Insensitive Munitions & Energetic Matrials Technology Symposium, 11-14 May 2009, Tucson, AZ.
- [63] Roos, B. (2007), The Characterization of IM Explosive Candidates for TNT, Insensitive Munitions and Energetic Materials Technology Symposium, Miami, FL, 15-18 October.
- [64] Chau, A., Di Stasio, A., Samuels, P., Singh, A. (2011), Development of CastableAluminized Explosive for General Purpose Bombs, IM Technology Gaps Workshop,Instituut Defensie Leergangen, The Hague, 20-24 June 2011.
- [65] N.N.(2010), Super Large Scale Gap Test of ALIMX-101 and ALIMX-102, 9-13 August 2010, NTS Camden AR.
- [66] Gold, V. M., Wu, Y.(2009), An Effect of Explosive Detonation Pressures on Fragmentation Characteristics of Explosive Fragmentation Munitions, ICF-12.
- [67] Provatas, A., Wall, C. (2013), Evaluation of IMX Explosives: IMX-101 & IMX-104 for the ADF, Parari 2013, 11-13. November, Canberra, Australia.
- [68] Furnish, M. D., Root, S., Samuels, P. (2014) Equation-of-State and Shock Homogeneity of IMX-101 and IMX-104, SAND2014-15499C, Sandia National Laboratories, Albuquerque, NM, USA, 8 pp.
- [69] Headrick, S. A., Spangler, K. Y., Sherill, M., Bukowski, E. (2015), Synthesis of Propyl Nitroguanidine (PrNQ), 2015 Insensitive Munitions And Energetic Materials Technology Symposium.
- [70] Ammon, H. L. (2008), Updated Atom/Functional Group and Atom_Code Volume Additivity Parameters for the Calculation of Crystal Densities of Single Molecules, Organic Salts, and Multi-Fragment Materials Containing H, C, B, N, O, F, S, P, Cl, Br, and I, *Propellants Explos. Pyrotech.* 33, 92-102.
- [71] Samuels, P., Spangler, K., Iwanuk, D., Cornell, R., Baker, E. L., Stiel, L. I. (2017), Detonation Performance Analyses for Recent Energetic Molecules, Shock Compression of Condensed Matter, 150033-1 – 150033-5.
- [72] Manuelli, C., Bernardini, L. (1920), Improvements in and relating to Explosives, GB138371, Italy.

- [73] Urbański, T., Skrzynecki, J. (1936), Analiza, termiczna mieszanin azotanu amonu, azotanu guanidyny I nitroguanidyny, Roczniki chemii, XVI, 353-358.
- [74] Akts, I., Herskovitz, J. (1976), Explosive Performance Modification by Cosolidification of Ammonium nitrate with fuels, Technical report 4987, Picatinny Arsenal, NJ, USA, 55 pp.
- Stinecipher, M. M. (1981), Eutectic Composite Explosives Containing Ammonium Nitrate, 7th International Detonation Symposium, Anapolis, MD, 16-19 July 1981, pp. 801-810.
- [76] Stinecipher, M. M. (1979), Investigation of the Physical and Explosives Properties of the Eutectic Explosive Ammonium Nitrate/Ammonium 3,5-Dinitro-1,2,4-triazolate, LA-9267, LASL, NM, USA, 8 pp.
- [77] Voreck, W. E. (1983), Castable High Explosive Compositions of Low Sensitivity, US 4421578, USA.
- [78] Voreck, W. E. (1997), Ammonium nitrate Eutectic Melt Cast Explosives, Theory and Practice of Energetic Materials, 8.-11. October Shenzen, China, pp. 132-145.
- [79] Chen, L., Shu, Y., Xu, R., Xu, T., Wang, X. (2013), Review on Energetic Eutectic, *Chinese J. Energ. Mater.* 21, 108-115.
- [80] Tian, M., Shu, Y., Chen, L., Li, H., Ju, X. (2014), Study of production method and phase diagram of MeNQ/NQ eutectic mixture, New Trends in Research of Energetic Materials, 2014, 1023-1030.
- [81] Patrick, M. A., Aubert, S. A. (1990), Intermolecular Complex Explosives, US 4948438, USA.
- [82] Struck, S. R. (1992), The Development of AFX-453, Insensitive Munitions Technology Symposium Williamsburg, VA, USA, 112-123.
- [83] N.N. (1995), 11.B WASTE CHARACTERISTICS, accessed at <u>https://cswab.org/wpcontent/uploads/2015/10/Eglin-Air-Force-Base-Notated-Pages-from-RCRA-Part-Bdescribing-allowable-wastes-June-2016.pdf</u>
- [84] Corley, J. (1990), Insensitive Munitions Development for General Purpose Bombs, Joint Government/Industry Symposium on Insensitive Munitions Technology Proceedings, March 13-14, Naval Surface Warfare Center, White Oak, MD.
- [85] Aubert, S. A., Roos, B. D. (2014), Melt Cast Insensitive Eutectic Explosive, US 8663406, USA.
- [86] Schlüter, H., Hermann, F. (1977), Hochbrisanter Sprengkörper, DE 1944844, Deutschland.
- [87] Cumming, A. S., Torry, R. W., Debenham, D. F., Garaty, B. J. (1994), Insensitive High Explosives and Propellants – The United Kingdom Approach, Insensitive Munitions Technology Symposium, 1994, p. 348-356.
- [88] Bocksteiner, G., Cliff, M. D., Horsley, R. A., Wolfson, M G. (1997) PBX Munitions An Insensitive, Alternative Filling for General Purpose Bombs, PARARI 1997.
- [89] Spear, R. J., Davis, L. M. (1989), An Australian Insensitive Munitions Policy A Working Paper Prepared for the Australian Ordnance Council, MRL-GD-0020, Defence Science and Technology Organisation, MRL, Melbourne, Victoria, Australia, 30 pp.
- [90] Kleinschmidt, E. (1992), Übertragungssichere Sprengstoffe ein Ziel für zukünftige Entwicklungen, 16. Sprengstoffgespräch, 4-6. November 1992, Meppen, S. 342-356.
- [91] Kroh, M. (1984), Detonation Properties of some Plastic Bonded Aluminium Containing High Explosives, 12th Symposium on Explosives and Pyrotechnics, San Diego, CA, USA, 13-15 March, 1-17 – 1-22.

- [92] Lynch, R. (1990), Development of Insensitive High Explosives using Propellant Technology, 90-2457, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, July 16-18 1990, Orlando, FL, USA.
- [93] Nouguez, B. (2019) personal communication.
- [94] Nouguez, B. (1996), High Explosives for I.M. : A Trade Off, ADPA meeting, 18.3.1996.
- [95] Lamy, P., Leiber, C.-O., Cumming, A. S., Zimmer, M. (1996), Air Senior National Representative Long Term Technology Project on Insensitive High Explosives (IHEs) Studies of High Energy Insensitive High Explosives, ICT-Annual Conference, 1996, V-1.
- [96] Barry, J. W., Zimmermann, G. A. (1986), Castable Insensitive High Explosive, GB2170494, USA.
- [97] Barry, J. W., Zimmermann, G. A. (1984) ATEX A Castable Insensitive High Explosive, 21.th DDESB, Houston, Texas, 28-30. August, 1984, 249- 258.
- [98] Akst, I. B. (1989), Heat of Detonation, the Cylinder Test and Performance in Munitions, 9th International Symposium on Detonation, 28.8 – 1.9 1989, Portland, OR, USA, 478-488.
- [99] Souers, P. C., Wu, B., Haselman Jr., L. C. (1995) Detonation Equation of State at LLNL, 1995, UCRL-ID-119262 Rev 3, Lawrence Livermore National Laboratory. 133 pp.
- [100] Baytos, J. F. (1979), Specific Heat and Thermal Conductivity of Explosives, Mixtures, and Plastic Bonded Explosives Determined Experimentally, LA-8034-MS, LASL, USA, 15 pp.
- [101] Cullis, I. Townsley, R. (2011), The potential of FOX-7 explosive in insensitive Munition Design, 26th International Ballistics Symposium.
- [102] Pimbley, G. H., Bowman, A. L., Fox, W. P., Kershner, J. D., Mader, C. L., Urizar, M. J. (1980), Investigating Explosive and Material Properties by Use of the Plate Dent Test, LA-8591-MS, Los Alamos Scientific Laboratory, 20 pp.
- [103] Bogachev, A. V., Ergunova, V. A., Goryukhalova R. V. Silina D. P., Smirnov S. P. (2016), Heat-resistant explosive, SU 1841219A1, Russia, filed 26.10.1970.
- [104] Licht, H. H.(2000), Performance and Sensitivity of Explosives, *Propellants Explos. Pyrotech.* 25, 126-132.
- [105] Liddiard, T. P., Price, D. (1987), The Expanded Large Scale Gap Test, NSWC TR 86-32, Naval Surface Weapons Center, Dahlgren, VA, USA, 49 pp.
- [106] Glenn, J. G., Aubert, S. A. (1996), Development and Calibration of a Super Large Scale Gap Test (SLSGT), WL-TR-96-7039, Wright Laboratory, Armament Directorate Munitions Division Energetic Materials Branch Eglin AFB, FL, USA, 38 pp.
- [107] Walker, F. E., Wasley, R. J. (1969), Critical Energy for Shock Initiation of Heterogeneous Explosives, *Explosivstoffe* 17, 9-13.
- [108] Mader, C. L., Kershner, J. D. (1984), The Three-Dimensional Hydrodynamic Hot-Spot Model Applied to PETN, HMX, TATB, and NQ, LA-10203-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, September 1984, 38 pp.
- [109] Mader, C. L., Kershner, J. D. (1985), The Three-Dimensional Hot-Spot Model, 8th International Symposium on Detonation, 15-19 July, 1985, Albuquerque, NM, USA, 42-51.
- [110] Toscano, J., Jaffe, I. (1963), Large-Scale Gap Test: Comparison of Tetryl and Pentolite Donor, *AIAA Journal*, *1*, 964-966.
- [111] Roos, B. (2007), The Characterization of IM Explosive Candidates for TNT Replacement, 2007 Insensitive Munitions and Energetic Materials Technology Symposium, Miami, FL, USA.15-18 October 2007
- [112] Busby, A. (2006), Pressable PBX Formulations Based on FOX-7, IMEMTS, Bristol.

- [113] Di Stasio, A. (2009) Qualification Testing of the Insensitive TNT Replacement Explosive IMX-101, 2009 IMEMTS.
- [114] Trimborn, F. (1967), Eine einfache Versuchsanordnung zum Gap-Test, Explosivstoffe, 15, 169-175.
- [115] Trimborn, F. Wild, R. (1982), Shock-Wave Measurements in Water for calibrating the BICT Gap-Test, *Propellants Explos. Pyrotech.*, 7, 87-90.
- [116] Ramsay, J. B., Popolato, A. (1965), Analysis of Shock Wave an Initiation Data for Solid Explosives, 4th International Detonation Symposium, White Oak, MD, USA, 12-15. October 1965, 233-238.
- [117] Tarver, C. M. (2016), Ignition and Growth Reactive Flow Model for IMX-101, LLNL-TR-683439, Lawrence Livermore National Laboratory, CA, USA, 14 pp.
- [118] Lee, P. R. (2009), A Simple Theoretical Method for the Determination of the Projectile Impact Sensitivity of Bare Explosives, PARARI 2009, Adelaide-Glenellg, NSW, Australia.
- [119] Lee, P. R. (2017), A Simple Theoretical Method for Determining the Sensitivity of Bare Explosives to Detonation by Projectile Impact, *Propellants Explos. Pyrotech.* 42, 1214-1221.
- [120] N.N. (2010), Policy for Introduction and Assessment of Insensitive Munitions (IM), STANAG 4439, NATo Standardization Agency, Brussels, Ed. 3.
- [121] Fried, L. E., Souers, C. P. (1996), BKWC: An Empirical BKW Parametrization Based on Cylinder Test Data, *Propellants Explos. Pyrotech.* 21, 215-223.
- [122] Pakulak Jr., J. M. (1984) USA Small-Scale Cookoff Bomb (SCB) Test, 21st Explosives Safety Seminar, 28-30 August 1984, Texas, USA, 539-548.
- [123] N. N.(2015), Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 6th revised edition, United Nations, Geneva, Switzerland.
- [124] Koch, E.-C. (2008), Extrem Insensitive Detonierende Stoffe, EIDS, Testverfahren und Materialien, Seminar – Insensitive Munition, Bundesakademie für Wehrverwaltung und Wehrtechnik, Mannheim, 30 June – 2 July, 2008.
- [125] Stettbacher, A. (1936), Nitroguanidin, Nitrocellulose, 141-145.
- [126] Doherty, R. M., Simpson, R. L. (1997), A Comparative Evaluation of Several Insensitive High Explosives, 28th International Annual Conference of ICT, 24-27 June 1997, Karlstuhe, Germany, V-32.
- [127] Klapötke, T. M., Penger, A., Pflüger, C., Stierstorfer, J. (2016), Melt-cast materials: combining the advantages of highly nitrated azoles and open-chain nitramines, New J. Chem. 40, 6059-6069.
- [128] Yu. Y., Chen, S., Li, T., Jin, S., Zhang, G., Chen, M., Li, L. (2017), Study on a novel high energetic and insensitive munitions formulation: TKX-50 based melt cast high explosive, RSC Adv. 7, 31485-31492.
- [129] Leonard, P., Francois, E. G. (2017), Final report for SERDP WP-2209 Replacement meltcastable formulations for Composition B, LA-UR-17-24143, Los Alamos National Laboratory, 15 May 2017, 25 pp.
- [130] Leonard, P. W., Chavez, D. E., Bowden, P. R., Francois, E. G. (2018), Nitrate Salt Based Melt Cast Materials, *Propellants Explos. Pyrotech.* 43, 11-14.
- [131] Johnson, E. C., Bukowski, E. J., Sabatini, J. J., Sausa, R. C., Byrd, E. F. C., Garner, M. A., Chavez, D. E. (2019), Bis(1,2,4-oxadazolyl)Furoxan: A Promising Melt-Castable Eutectuc Material of Low Sensitivity, ChemPlusChem <u>https://doi.org/10.1002/cplu.201800563</u>.
- [132] Amnéus, A.-M., Nyqvist, J.-O., Bergvall-Laitala, C., Eldsäter, C., Adolfsson, R., de Flon, J., Helte, A. (2010), Characterization of Compositions based on New Low Sensitive Energetic Materials, ICT Annual Conference, Karlsruhe, Germany, V-10.