

Lead Azide Replacement Program NDIA Fuze Conference April, 2005

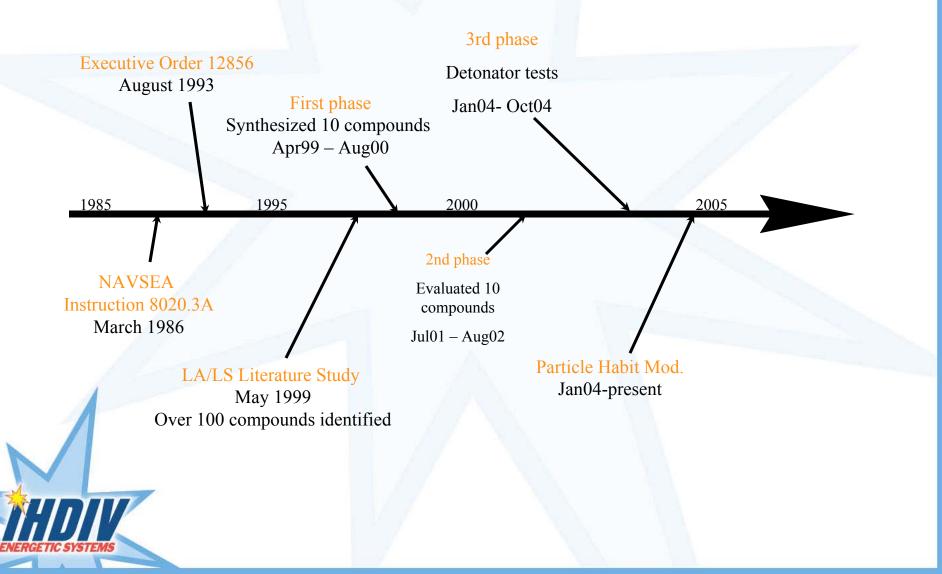
John Hirlinger – U.S. Army ARDEC (973) 724-6498 Magdy Bichay – NSWC-IH (301) 744-2359

> John Fronabarger Mike Williams Kelly Armstrong Randall J. Cramer

BACKGROUND

- Regulatory Drivers:
 - NAVSEA Ins. 8020.3A (1986)- Limiting use of Lead azide in Navy ordinance for safety purposes – formation of copper azide in situ.
 - Executive Order 12856 (1993)- Series of executive orders issued to reduce/eliminate procurement of hazardous substances and chemicals by federal facilities.
 - EPA -Strict regulations regarding the use of lead and other heavy metals
- Program initiated by NAVAIR PMA 201 to replace hazardous material used in the CAD/PAD procurement
- Supplemental effort funded by the SERDP office to synthesize (using existing process) and evaluate de-sensitized silver azide

No U.S. Manufacturer of Lead Azide



PROGRAM TIME LINE

Synthesis/evaluation process

- Typical process for a replacement compound evaluation
 - Identify Compound as a primary explosive
 - Predict detonation properties and computer modeling
 - Develop Synthesis method
 - Evaluate Compound
 - Phase I Testing Properties
 - Phase II Testing Performance
 - Evaluate test results, make recommendations for follow-on development

Synthesis/evaluation process Cont'd

Phase I Testing

- Impact Sensitivity Ball Drop Method
- Friction Sensitivity Small BAM 2075g maximum applied load
- Differential Scanning Calorimetry (DSC) 20°C/min, hermetically sealed AI pans
- Solubility in water
- Theoretical Maximum Density Helium Pycnometry
- Scanning Electron Microscopy Particle Habit

Phase II Testing

- Strong Ignition witness plate for explosive output all viable materials at 10 kpsi loading pressure
 - Variable Loading Strong Ignition Best Performer from 10K test M59 Detonator Testing – Best Performer from Strong Ignition Testing

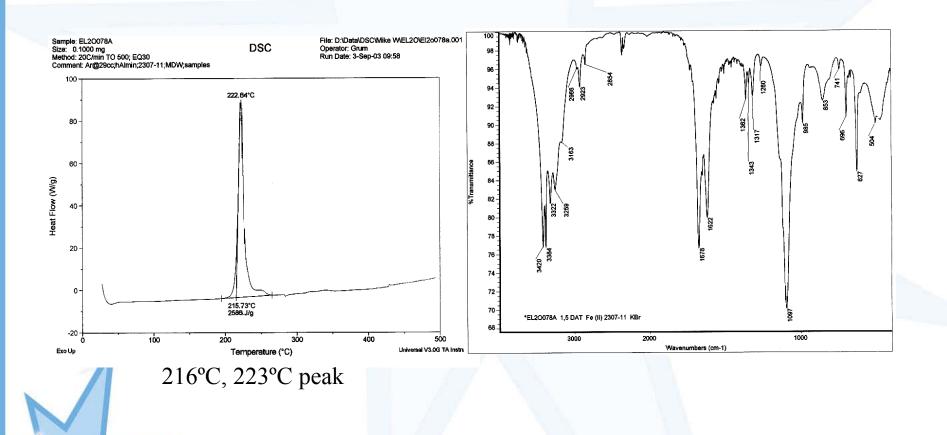
Strong Confinement Test Results at 10.0 Kpsi Loading Pressure

Candidate	Description	Average Charge	Average Dent
		Density (g/cm³)	(mils)
2A	Trans-tetraamminediazidocobalt(III) perchlorate	1.510	19.1
13A	Copper(II) 5-nitrotetrazole	1.440	13.2
15A	Bis-furoxano-nitrophenol (KBFNP)	1.626	0.8
17A	3-Azido-5-nitro-[1,2,4]triazole, copper complex (dry)	1.421	2.3
19A	Diazido-nitramino-s-triazine, Rb	1.810	0.8
19A	Diazido-nitramino-s-triazine, Cs	2.026	0.5
28A	1,5 Diaminotetrazole, Fe(II) perchlorate complex	1.465	27.0
28A	1,5 Diaminotetrazole, Cu(II) perchlorate comp	1.412	16.8
29A	DAATO 3.5	1.203	0.0
30A	ENTA	1.756	1.3
LA	Lead Azide, RD1333, LN 40148	3.119	37.3

Lead Azide Candidates

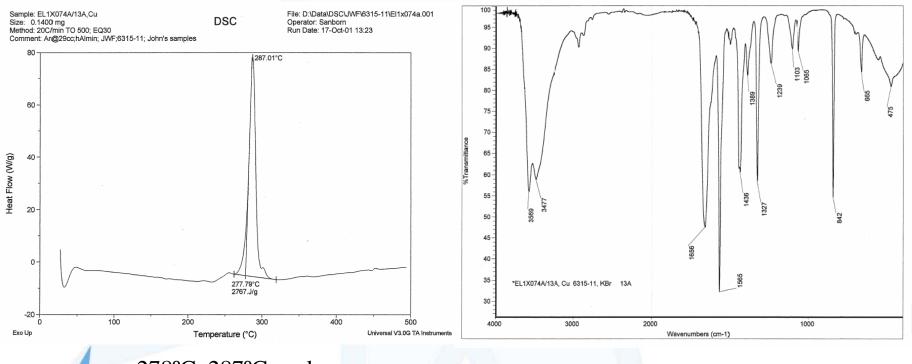
- Three Compounds selected for further development/ evaluation
 - 1,5-Diaminotetrazole, Fe complex (28A)
 - Copper(II) 5-nitrotetrazole (13A)
 - Trans-tetraamminediazido-cobalt(III) perchlorate (2 A)

28A, 1,5 Diaminotetrazole, Fe(II) perchlorate complex



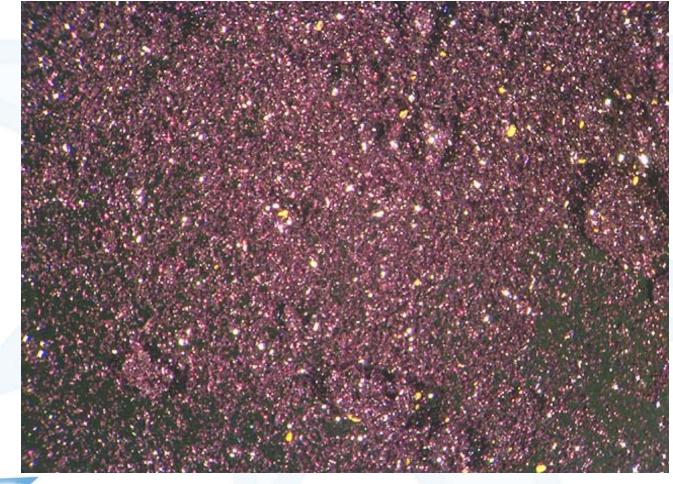
28A, 1,5 Diaminotetrazole, Fe(II) perchlorate complex

13A, Copper(II) 5-nitrotetrazole

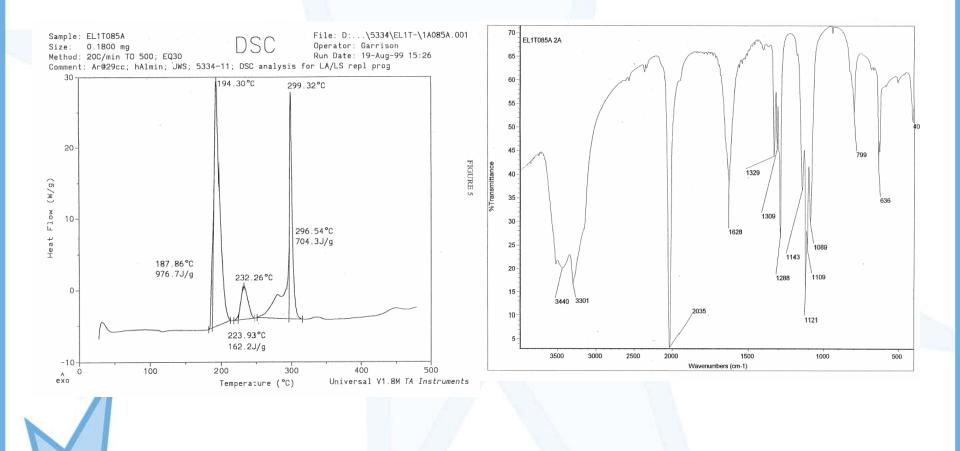


אחריאל 🕅

13A, Copper(II) 5-nitrotetrazole


278°C, 287°C peak

2A, Trans-tetraamminediazido-cobalt(III) perchlorate



2A, Trans-tetraamminediazido-cobalt(III) perchlorate

Strong Ignition Test Results

CODE	CANDIDATE		AVERAGE CHARGE	AVERAGE DENT IN AI
		(kpsi)	DENSITY (g/cm ³)	BLOCK (mils)
	Trans-	5	1.33	19.6
2A	tetraamminediazido	10	1.44	31.1
	-cobalt(III)	20	1.60	29.3
	perchlorate	40	1.84	21.7
	77	5	1.26	9.0
13A ₁	Copper(II) 5-	10	1.38	22.6
	nitrotetrazole	20	1.53	31.7
		40	1.77	29.0
28A	1,5-	5	1.18	35.3
	Diaminotetrazole	10	1.33	40.3
	Fe(II) Perchlorate	20	1.52	37.7
	complex	40	1.62	23.3
		5	2.87	30.5
	RD1333 LA	10	3.17	34.0
DII		20	3.60	36.9
		40	3.98	39.4

Tabulated Properties of Costain Process Silver Azide

<u>Property</u>	Costain Process Lot 8702	Costain Process Lot 8703	RD1333 Lead Azide	
Bulk Density g/cc:	1.6	1.6	1.3	
Granulation:				
%On 100	18	17	1	
On 140	27	32	5	
On 200	33	24	14	
On 325	18	22	42	
Thru 325	4	5	38	
Assay:	99+%	99+%	97-98%	
Hygroscopicity:	Nil	Nil	Very Slight	
Vacuum Stability:				
1g/40 hrs/150°C	0.49	0.34	0.40	
Impact Sensitivity	.A.			
P.A. 10% Point:	11 in	7 in	7 in	
50% Point	17 in	10 in	8 in	
Ball Drop 10%:	11 in	10 in.	10 in.	
Electrostatic Sensitivity:	.0094 Joules	.018 Joules	.0005 Joules	

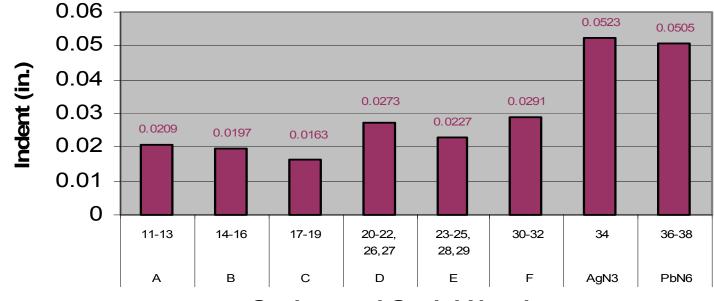
T. Costain, "A New Method for Making Silver Azide", Technical Report 4595, Picatinny Arsenal, Dover, N.J., Feb. 1974; U.S. Patent 3,943,235 (1976)

Properties of Costain Silver Azide vs Colloidal Silver Azide

	Costain	Colloidal	RD1333
	Silver azide	Silver azide	Lead Azide
DSC	Endotherm: 310°c Exotherm: 363°c	Endotherm: 310°c Exotherm: 370°c	Exotherm: 323°c
IR (cm ⁻¹)	3438, 3354, 2036(s),	3451, 3356, 2036(s),	3340, 3331, 2117,
	1630, 648	1636, 1382(w), 649	2037(s), 1629, 1329
Friction	No Fire = 10g	No Fire = <10g	No Fire = <10g
Sensitivity	Low Fire = 15g	Low Fire = 10g	Low Fire = 10g
Impact Sensitivity	0.047 ± 0.004 joules	0.054 ± 0.001 joules	0.230 ± 0.038 joules
ESD Sensitivity	0.01J (20 TIL)	0.01J (20 TIL)	0.02J (20TIL)

M59 Stab Detonator

- Two compounds selected for evaluation in M59 hardware
 - De-sensitized silver azide
 - Compound Synthesized using Costain method to reduce handling sensitivity
 - 1,5-Diaminotetrazole, Fe complex (28A)



M59 Detonator Testing

Average Indent in Aluminum

Average Indent

Series and Serial Numbers

M59 Stab Detonator with DFeP

- Series D had second highest indents
 - 15mg @ 70ksi NOL130
 - 60mg @ 15ksi DFeP
 - 10mg @ 15ksi RDX
- Series F had highest indents
 - 15mg @ 70ksi NOL130
 - 60mg @ 10ksi DFeP
 - 10mg @ 10ksi RDX
- Series A had the highest DFeP content but moderate indent
 - 15mg @ 70ksi NOL130
 - 80mg @ 15ksi DFeP
 - No RDX

Series C had highest RDX content but lowest indent

M59 Stab Detonator with DFeP

- 10ksi loading pressure is preferred
 - PacSci data suggested this w/o output
 - This data shows RDX detonating at 10ksi
- RDX may not be sufficiently driven to strong detonation. Could imply problems transitioning shock to leads or boosters. More work is needed characterizing shock performance rather than random application testing.
- DFeP shots with Brass Confinement can meet .125" min lead disc requirement.
- **DFeP** has only $\frac{1}{2}$ to $\frac{2}{3}$ the indent performance of azides.

Future work

- Enhance crystallization of 13A
- Investigate the use of other oxidizer groups to replace the perchlorate group used in compound 28A.
- Develop a method to further de-sensitize silver azide
- Evaluate the use of Nano material in primary explosives
 - Evaluate new compounds as they become available

ACKNOWLEDGEMENTS Team members

- Magdy Bichay NSWC-IH
- Dr. Alfred Stern NSWC-IH
- Gerald Laib NSWC-IH
- Michael Sitzmann NSWC-IH
- John Hirlinger ARDEC
- Dr. Sury Iyer ARDEC
- Dr. Paritosh Dave Geo-Centers
- Dr. Peter Ostrowski Energetic Materials Technology
- Dr. Michael Hiskey LANL
- Dr. Robert Chapman NAWC-CL
- Dr. Jeffery Bottaro SRI International
- Dr. Charles Winter Wayne State University
- Dr. Farhad Forohar NSWC-IH
- Dr. Phil Pagoria LLNL
- Dr. Cliff Bedford ONR