Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.elsevier.com/locate/fluid

Solid–liquid phase equilibria of $Ca(H_2PO_2)_2$ – $CaCl_2$ – H_2O and $Ca(H_2PO_2)_2$ – NaH_2PO_2 – H_2O ternary systems at 298.15 K

Li-na Tan^a, Jun-min Wang^b, Huan Zhou^{a,*}, Li-hua Wang^a, Pin Wang^a, Xiaoqin Bai^a

^a Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin TEDA 300457, PR China

^b Hubei Sky-Lake Chemical Company of Limited, Hubei Tianmen City 431702, PR China

ARTICLE INFO

Article history: Received 26 November 2014 Received in revised form 26 December 2014 Accepted 30 December 2014 Available online 31 December 2014

Keywords: Solid–liquid equilibria Phase diagram Calcium hypophosphite Sodium hypophosphite Calcium chloride

ABSTRACT

Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutrition supplements. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the solid–liquid phase equilibria of $Ca(H_2PO_2)_2$ – $CaCl_2$ – H_2O and $Ca(H_2PO_2)_2$ – NaH_2PO_2 – H_2O ternary systems at 298.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of $Ca(H_2PO_2)_2$ and $CaCl_2-6H_2O$, and three solid salts of $Ca(H_2PO_2)_2$, NaCa (H_2PO_2)₃, and NaH_2PO_2·H_2O can form in the corresponding systems under phase-equilibrium conditions. $Ca(H_2PO_2)_2$ has low solubility in the $Ca(H_2PO_2)_2$ – $CaCl_2-H_2O$ system. NaCa(H_2PO_2)₃ occupies a large solid field in the ternary system of $Ca(H_2PO_2)_2$ – $NaH_2PO_2-H_2O$.

© 2015 Published by Elsevier B.V.

1. Introduction

Calcium hypophosphite is widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating and animal nutrition supplements [1]. Owing to its high reducibility, calcium hypophosphite is typically used instead of hypophosphorous acid as a mild deamination reagent [2]. In addition, calcium hypophosphite is used for treating obesity in humans [3].

Calcium hypophosphite is synthesized via a phosphorus sludge processing with alkali, according to the following equation (8) $P+3Ca(OH)_2+6H_2O=3Ca(H_2PO_2)_2+2PH_3$. However, this synthesis is accompanied by the production of waste, namely phosphite-containing slag (a mixture of CaHPO₃ and CaCO₃), which amounts to about 25% of the yellow phosphorus remnants [4]. To obtain a higher purity of calcium hypophosphite for specific applications, the following replacement reaction was employed: CaCl₂+2 NaH₂PO₂·H₂O = Ca(H₂PO₂)₂ + 2NaCl + 2H₂O.

Solid–liquid phase equilibria (SLE) data and phase diagrams are essential for process development, design and control. SLE data of $H_2PO_2^-$ -containing systems that relate to hydrometallurgy have been reported, such as, the several ternary systems of $Na_2(H_2PO_2)_2-Mn(H_2PO_2)_2-H_2O$, $Ca(H_2PO_2)_2-Mn(H_2PO_2)_2-H_2O$, $(NH_4)_2(H_2PO_2)_2-Mn(H_2PO_2)_2-H_2O$ at 293.15 K by R.M. Dolinina et al. [5]; $NaH_2PO_2-Ba(H_2PO_2)_2-H_2O$, $NaCl-NaH_2PO_2-H_2O$, and $BaCl_2-Ba(H_2PO_2)_2-H_2O$ at 273.15 K by Erge et al. [6]; NaH_2PO_2-Zn $(H_2PO_2)_2-H_2O$, $NaCl-NaH_2PO_2-H_2O$, and $ZnCl_2-Zn(H_2PO_2)_2-H_2O$ at 273.15 K by Adiguzel et al. [7].

Several quaternary systems of $H_2PO_2^{-}$ -containing have been reported, for example Na⁺-Mn²⁺//Cl⁻-(H₂PO₂)⁻-H₂O at 293.15 K by Aliev [8]; Na⁺-Mn²⁺//NO₃⁻-(H₂PO₂)⁻-H₂O at 273.15 K by Alisoglu and Necefoglu [9]; Na⁺-Mn²⁺//Cl⁻-(H₂PO₂)⁻-H₂O [10] and K⁺-Mn²⁺//Br⁻-(H₂PO₂)⁻-H₂O [11] at 298.15 K by Alisoglu; Na⁺-Mn²⁺//Br⁻-(H₂PO₂)⁻-H₂O at 278.15 K by Alisoglu et al. [12]; Na⁺-Ba²⁺//Cl⁻-(H₂PO₂)⁻-H₂O and Na⁺-Zn²⁺//Cl⁻-(H₂PO₂)⁻-H₂O at 273.15 K by Erge et al. [6] and Adiguzel et al. [7].

However, SLE data for $Ca^{2+}-Na^+//Cl^--(H_2PO_2)^--H_2O$ system and its subsystems are scant, except for the subsystem of NaCl-CaCl₂-H₂O [13]. In this study, we focused on the solid– liquid phase equilibria of Ca(H₂PO₂)₂-containing ternary systems of Ca(H₂PO₂)₂-CaCl₂-H₂O and Ca(H₂PO₂)₂-NaH₂PO₂-H₂O; we also report their SLE data and phase diagrams at 298.15 K.

2. Experimental

2.1. Apparatus and reagents

The chemicals used in this study were purified before use; these are described in Table 1. Doubly deionized water with conductivity

CrossMark

^{*} Corresponding author. Tel.: +86 22 60600945; fax: +86 22 60600358. *E-mail address:* zhouhuan@tust.edu.cn (H. Zhou).

Table 1				
Chemical samples	used	in	this	study

Chemical	CAS no.	Source	Initial mass fraction purity	Purification method	Final mass fraction purity	Analysis method
Calcium chloride anhydrous	10043-52- 4	A.R. ^a	0.960	Recrystallization	0.995 ^b	EDTA method for \mbox{Ca}^{2+} and \mbox{AgNO}_3 method for \mbox{Cl}^-
Calcium hypophosphite	7789-79-9	A.R. ^a	0.990	None	0.990	EDTA method for Ca^{2+} and $Na_2S_2O_3$ method for $H_2PO_2^-$
Sodium hypophosphite	7681-51-0	A.R. ^a	0.990	None	0.990	$Na_2S_2O_3$ method for $H_2PO_2^-$

^a A.R. from Tianjin Guangfu Fine Chemical Research Institute.

^b Record by CaCl₂·6H₂O.

lower than 1×10^{-4} S m⁻¹ and pH of 6.60 at 298.15 K was used to prepare the solid-liquid mixtures employed for the experiments and chemical analysis.

The solid–liquid phase equilibria measurements of the Ca $(H_2PO_2)_2$ –CaCl₂–H₂O and Ca $(H_2PO_2)_2$ –NaH₂PO₂–H₂O ternary systems were carried out in a jacketed equilibrium tank (Chemglass Scientific Apparatus, 2000 mL) with a mechanical stirrer (Heidolph). The temperature of the solid–liquid mixtures was controlled by a thermostatic oil bath (Huber K6s-cc-NR) and measured with a mercury-in-glass thermometer with an accuracy of ± 0.05 K.

2.2. Experimental

The isothermal solubility equilibrium methodology was adopted to determine the SLE data. For example, in order to study the $Ca(H_2PO_2)_2$ saturated solid-liquid mixture of the $Ca(H_2PO_2)_2$ -CaCl₂-H₂O system, an initial solid-liquid mixture with 100 g water and 100 g calcium hypophosphite was prepared. A given amount of CaCl₂·6H₂O was then added to the mixture at different stages until the invariant point was found. During the entire experimental procedure, the mixture was kept at a temperature of 298.15 K; at each stage, the mixture was stirred for at least one day until stabilization was reached; it was then allowed to settle for at least 4h or until the liquid phase became completely clear. The liquid samples and wet solid samples were taken through the top port and bottom valve, respectively; the wet solid samples were separated by isothermal filtration. The initial solid-liquid mixture of saturated CaCl₂ was prepared by using 50 g water, and 550 g CaCl₂·6H₂O; Ca(H₂PO₂)₂ was then added at different stages, until the invariant point was found. For the Ca(H₂PO₂)₂-NaH₂PO₂-H₂O system, the same procedure with the initial solid-liquid mixtures of 100 g Ca(H₂PO₂)₂ + 250 g water, and 400 g NaH₂PO₂H₂O + 200 g water were used to determine the Ca(H₂PO₂)₂ and NaH₂PO₂ saturation curves, respectively.

The liquid and wet solid samples were studied by chemical analysis, and then, the wet solid sample was further disposed by drying with filter paper and studied using X-ray powder diffracdometer (XRD)(PERSEE, XD-3). The density of the liquid phase was measured using an isothermal densimeter (METLER DE51) with a precision temperature of ± 0.02 K and an standard uncertainty density of less than ± 0.0001 kg L⁻¹

2.3. Analytical methods

The weighted samples were placed in a 250 ml volumetric flask, dissolved in water, and diluted to the total volume. The concentrations of Ca²⁺ and Cl⁻ were analyzed via complexometric titration with EDTA [14], and Mohr titration with AgNO₃ [14], respectively. To determintion the H₂PO₂⁻ ion concentration, an improved iodometry method was used. In particular, 2-5 mL sample was mixed with 25 ml (KBrO₃ + KBr) solution (0.1 mol L^{-1}). and 5 ml H₂SO₄ solution (2.0 mol L^{-1}) in a closed iodine flask. The mixture was then settled in a dark place for 1 h and kept at a temperature higher than 298.15 K. Iodine formed in the reaction was titrated using a $Na_2S_2O_3$ -water standard solution (0.1 mol L⁻¹) with an indicator of 5.0 gL^{-1} starch in water. Before titration, an excess amount (about 5 ml) KI solution (200 g L^{-1}) was added, and then, the solution was shaken and settled for 10 min. Parallel blank experiments were carried out. In particular, the concentration of the Na⁺ ion was calculated by electroneutrality, and that of the $H_2PO_2^-$ ion concentration was calculated using the following equation:

$$H_2 PO_2^- = \frac{(V_1 - V_2) \times c \times M \times V_4 \times 100}{1000 \times V_3 \times m}$$
(1)

where, V_{1-2} are the volumes of the Na₂S₂O₃ standard solution for the blank experiment and sample titration; V_{3-4} are the sample

Table 2 Solid–liquid equilibria data for the Ca(H₂PO₂)₂–CaCl₂–H₂O ternary system at T=298.15 K and p = 101.3 kPa.^a

No.	Liquid phase (% mass)			Density	Wet solid (% mass)			Solid phase ^b	
	$Ca(H_2PO_2)_2$	CaCl ₂	H ₂ O	$(ho/kg\ L^{-1})$	$Ca(H_2PO_2)_2$	CaCl ₂	H ₂ O		
1	13.89	0.00	86.11	1.0912	75.60	0.00	24.40	S ₁	
2	8.37	11.74	79.89	1.1560	69.73	4.07	26.20	S ₁	
3	5.86	21.51	72.63	1.2296	72.77	5.87	21.36	S ₁	
4	4.95	29.80	65.25	1.3052	71.25	8.99	19.76	S ₁	
5	4.79	36.73	58.48	1.3841	72.14	10.91	16.95	S ₁	
6	5.92	42.5	51.58	1.4591	71.22	13.24	15.54	S ₁	
7	6.23	44.87	48.90	1.4921	11.92	43.53	44.55	$S_1 + S_2$	
8	6.23	44.87	48.90	1.4921	25.93	37.04	37.03	$S_1 + S_2$	
9	6.09	44.68	49.23	1.4881	1.03	49.88	49.09	S ₂	
10	3.24	44.52	52.24	1.4675	1.02	48.5	50.48	S ₂	
11	0.00	44.33	55.67	1.4448	0.00	48.52	51.48	S_2	

^a Standard uncertainties *u* are *u*(*T*) = 0.05 K, *u*(*p*) = 0.2 kPa (ambient pressure change), *u*(*ρ*) = 0.0001 kg L⁻¹. *u*(*x*) for Ca(H₂PO₂)₂, CaCl₂ are 0.0002 and 0.0002 in mass fraction, respectively.

^b S₁: Ca(H₂PO₂)₂, S₂: CaCl₂·6H₂O.

No.	Liquid phase (% mass)			Density	Wet solid (% mass)			Solid phase ^b
	$Ca(H_2PO_2)_2$	NaH ₂ PO ₂	H ₂ O	$(ho/kg L^{-1})$	$Ca(H_2PO_2)_2$	NaH ₂ PO ₂	H ₂ O	
1	13.89	0.00	86.11	1.0912	88.60	0.00	11.40	S ₁
2	8.63	5.04	86.33	1.0914	72.03	1.50	26.47	S ₁
3	5.24	10.94	83.82	1.1064	71.30	3.20	25.50	S ₁
4	3.05	16.18	80.77	1.1555	70.64	4.60	24.76	S ₁
5	3.03	16.54	80.43	1.1837	65.06	9.12	25.82	$S_1 + S_3$
6	3.03	16.54	80.43	1.1837	59.46	13.15	27.39	$S_1 + S_3$
7	3.03	16.54	80.43	1.1837	53.50	18.79	27.71	$S_1 + S_3$
8	0.80	23.90	75.30	1.1705	44.90	30.45	24.65	S ₃
9	0.09	35.05	64.86	1.2495	42.97	34.26	22.77	S ₃
10	0.03	43.53	56.44	1.3193	41.70	37.23	21.07	S ₃
11	0.03	47.41	52.56	1.3422	43.47	38.35	18.18	S ₃
12	0.03	51.49	48.48	1.3805	29.76	48.31	21.93	S ₃ + S ₄
13	0.03	51.49	48.48	1.3805	9.84	64.59	25.57	$S_3 + S_4$
14	0.00	51.95	48.05	1.3790	0.00	78.01	21.99	S4

Solid-liquid equilibria	data for the Ca(HaPOa)	-NaHaPOa-HaO ternary	system at $T = 298.15 \text{ K}$ and $n = 101.3 \text{ kPa}^{-3}$
			220.13 K and $D = 101.3 K$ a.

^a Standard uncertainties u are u(T) = 0.05 K, u(p) = 0.2 kPa (ambient pressure change), $u(\rho) = 0.0001$ kg L¹. u(x) for Ca(H₂PO₂)₂, NaH₂PO₂ are 0.00006 and 0.0001 in mass fraction, respectively,

^b S₁: Ca(H₂PO₂)₂, S3: NaCa(H₂PO₂)₃, S4:NaH₂PO₂·H₂O.

and dilute volumes; c is the concentration of the Na₂S₂O₃ standard solution; *m* is the weight of liquid or solid sample; M (=16.25 g mol⁻¹) is a constant which equas to the quarter of the molecular mass of H₂PO₂⁻.

3. Results and discussion

The salt solubility of the binary salt-water systems was measured to be 44.33% mass CaCl₂, 51.95% mass NaH₂PO₂, and 13.89% mass Ca(H₂PO₂)₂ at 298.15 K; the corresponding solids are CaCl₂·6H₂O, NaH₂PO₂·H₂O and Ca(H₂PO₂)₂, respectively.

The solid-liquid phase equilibria data of the ternary systems of Ca(H₂PO₂)₂-CaCl₂-H₂O and Ca(H₂PO₂)₂-NaH₂PO₂-H₂O are given in Tables 2 and 3, along with the wet-solid data and corresponding liquid densities. The characteristics of the solid-liquid phase equilibria of the two ternary systems are shown in Figs. 1 and 2, respectively. The solubility-density graphics are shown in Fig. 3.

For the Ca(H₂PO₂)₂-CaCl₂-H₂O system, our results showed that the solid salts of $Ca(H_2PO_2)_2$ (S₁) and $CaCl_2 \cdot 6H_2O$ (S₂) are in equilibrium with liquid phase. The invariant point (B in Fig. 1) of co-saturated $Ca(H_2PO_2)_2$ and $CaCl_2 \cdot 6H_2O$ was determined to be 6.23% mass Ca(H2PO2)2, 44.87% mass CaCl2, and 48.90% mass

Fig. 1. Solubility diagram of the Ca(H₂PO₂)₂-Na H₂PO₂-H₂O system at 298.15 K.

Fig. 2. Solubility diagram of the Ca(H₂PO₂)2-Na H₂PO₂-H₂O system at 298.15 K.

water, with the liquid density of the invariant point being 1.4921 kg L^{-1} .

densities of the saturated liquids are affected by the composition of the contained salts, with the largest density being found at the invariant point.

Data displayed in Table 2 and Fig. 1 suggest that the $Ca(H_2PO_2)_2$ solubility is lower than that of $CaCl_2$; this results in a significantly larger solid region of $Ca(H_2PO_2)_2$ compared to that of $CaCl_2$. The

For the $Ca(H_2PO_2)_2$ -NaH₂PO₂-H₂O system, (Table 3 and Fig. 2), besides the solid salts of NaH₂PO₂·H₂O (S₄) and Ca(H₂PO₂)₂ (S₁), an

Fig. 3. Density diagram for the ternary systems $Ca(H_2PO_2)_2$ -Na $H_2PO_2-H_2O$ and $Ca(H_2PO_2)_2$ -Ca Cl_2-H_2O at T = 298.15 K and p = 101.3 kPa.

Fig. 4. XRD pattern of no.8-11 solid samples listed in Table 2.

anhydrous double salt, NaCa(H₂PO₂)₃ (S₃), is found in the system; XRD analysis is shown in Fig. 4. One incommensurate invariant point E (S₁+S₃) and one commensurate invariant point F (S₃+S₄) are determined as 3.03% mass Ca(H₂PO₂)₂ and 16.54% mass of NaH₂PO₂, and 0.03% and 51.49%, respectively. The densities of the invariant points are 1.1837 kg L⁻¹ and 1.3805 kg L⁻¹ for *B* and *C*, respectively.

The data in Fig. 2 indicate that the complex salt of NaCa(H_2PO_2)₃ is an incompatible double-salt which decomposes into the Ca (H_2PO_2)₂ solid salt and a NaH₂PO₂ -containing solution upon water addition. The co-saturated point F has a trace solubility of Ca (H_2PO_2)₂ which makes it very close to point G (NaH₂PO₂ saturated in water). The local enlargement of Fig 2 shows the details of F and G,. NaCa(H_2PO_2)₃ occupies a large region in the ternary phase diagram, suggesting that it can be easily formed upon the addition of Ca (H_2PO_2)₂ to the NaH₂PO₂-containing solution.

4. Conclusion

The solid–liquid phase equilibria of the Ca(H₂PO₂)₂–CaCl₂–H₂O and Ca(H₂PO₂)₂–NaH₂PO₂–H₂O ternary systems at 298.15 K were studied using the isothermal solubility equilibrium method, and their phase diagrams and density were obtained. It was found that two solid salts of CaCl₂·6H₂O and Ca(H₂PO₂)₂, and three solid salts of Ca(H₂PO₂)₂, NaCa(H₂PO₂)₃, and NaH₂PO₂·H₂O can be form in the corresponding systems under phase equilibrium conditions. Ca (H₂PO₂)₂ has low solubility in the Ca(H₂PO₂)₂–CaCl₂–H₂O system; NaCa(H₂PO₂)₃ occupies a large solid field in the ternary phase diagram of Ca(H₂PO₂)₂–NaH₂PO₂–H₂O.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 21176189 and U1407204), The Training Program for Changjiang Scholars and Innovative Research Team in University ([2013]373) and the Innovative Research Team of Tianjin Municipral Education Commission (TD12-5004).

References

- G. Tang, X.J. Huang, H.C. Ding, Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite, J. RSC Adv. 4 (2014) 8985–8993.
- [2] H. Mitsuhashi, T. Kawakami, H. Suzuki, A mild one-pot deamination of aromatic amines bearing electron-withdrawing groups. Calcium hypophosphite as a dediazonation reagent in nonaqueous media, J. Tetrahedron Lett. 41 (2000) 5567–5569.
- [3] D.S. Robertson, Magnesium or calcium hypophosphite could be a treatment for obesity in humans, J. Med. Hypotheses 66 (2006) 439–440.
- [4] L. Tovazhnyansky, P. Kapustenko, L. Ulyev, S. Boldyryev, O. Arsenyeva, Process integration of sodium hypophosphite production, J. Appl. Therm. Eng. 30 (2010) 2306–2314.
- [5] R.M. Dolinina, V.A. Aliev, I.N. Lepeschkov, Zh. Neorg. Khim. 34 (1990) 1324–1327.
- [6] H. Erge, V. Adiguzel, V. Alisoglu, Study of the solubility in Na⁺-Ba²⁺//Cl⁻-H₂O, Na⁺-Ba²⁺-(H₂PO₂)⁻-H₂O, Na⁺-Cl⁻-(H₂PO₂)⁻-H₂O, and Ba²⁺-Cl⁻-(H₂PO₂)⁻-H₂O ternaries, and in Na⁺-Ba²⁺//Cl⁻-(H₂PO₂)⁻-H₂O reciprocal quaternary system at 0 °C, J. Fluid Phase Equilib. (2013).
- [7] V. Adiguzel, H. Erge, V. Alisoglu, H. Necefoglu, Study of the solubility, viscosity and density in Na⁺-Zn²⁺//Cl⁻-H₂O Na⁺-Zn²⁺- (H₂PO₂)⁻-H₂O, Na⁺-Cl⁻// (H₂PO₂)⁻-H₂O, and Zn²⁺-Cl⁻/(H₂PO₂)⁻-H₂O ternary systems, and in Na⁺-Zn²⁺/Cl⁻-(H₂PO₂)⁻//H₂O reciprocal quaternary system at 273.15 K, J. Chem. Thermodyn. 75 (2014) 35-44.
- [8] V.A. Aliev, S.M. Velieva, Zh. Neorg. Khim. 30 (1985) 798-801.
- [9] V. Alisoglu, H. Necefoglu, Solubility in the Na₂(NO₃)₂-Na₂(H₂PO₂)₂-Mn (H₂PO₂)₂-H₂O system, J.C.R. Chim. 324 (1997) 139-142.
- [10] V. Alisoglu, Physicochemical analysis of the system Na⁺-Mn²⁺//Cl⁻-(H₂PO₂)⁻-H₂O, J.C.R. Chim 5 (2002) 547-549.
- [11] V. Alisoglu, Solubility and phase in equilibrium in the K₂Br₂-MnBr₂-Mn (H₂PO₂)₂-H₂O system, J.C. R. Chimie 1 (1998) 781-785.
- [12] V. Alisoglu, Study of solubility and of phases in the equilibrium in the Na⁺-Mn² ⁺//Br-(H₂PO₂)-H₂O system, J. C.R. Chim. 8 (2005) 1684–1687.
- [13] X.P. Ding, Y.J. Bi, L.J. Shi, P.S. Song, B. Sun, The phase equilibria study of NaCl-CaCl₂-H₂O ternary system at 25 °C, J. Salt Lake Res. 17 (2009) 40–43.
- [14] M.Z. Cai, Y.P. Hang, Q. Yu, Analytical Chemistry [M], Chemical Industry Press, Beijing, 2013.